Daniela Delneri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471093/publications.pdf Version: 2024-02-01

DANIELA DELNEDI

#	Article	IF	CITATIONS
1	Engineering evolution to study speciation in yeasts. Nature, 2003, 422, 68-72.	13.7	232
2	Plasticity of genetic interactions in metabolic networks of yeast. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2307-2312.	3.3	185
3	Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Molecular Biology of the Cell, 2011, 22, 4435-4446.	0.9	138
4	Exploring redundancy in the yeast genome: an improved strategy for use of the cre–loxP system. Gene, 2000, 252, 127-135.	1.0	120
5	Identification and characterization of high-flux-control genes of yeast through competition analyses in continuous cultures. Nature Genetics, 2008, 40, 113-117.	9.4	93
6	Genomeâ€wide analysis and proteomic studies reveal APE1/Refâ€1 multifunctional role in mammalian cells. Proteomics, 2009, 9, 1058-1074.	1.3	90
7	Environmental systems biology of coldâ€ŧolerant phenotype in <i>Saccharomyces</i> species adapted to grow at different temperatures. Molecular Ecology, 2014, 23, 5241-5257.	2.0	79
8	Towards a truly integrative biology through the functional genomics of yeast. Current Opinion in Biotechnology, 2001, 12, 87-91.	3.3	75
9	Sequencing and Characterisation of Rearrangements in Three S. pastorianus Strains Reveals the Presence of Chimeric Genes and Gives Evidence of Breakpoint Reuse. PLoS ONE, 2014, 9, e92203.	1.1	71
10	Non-coding RNAs and disease: the classical ncRNAs make a comeback. Biochemical Society Transactions, 2016, 44, 1073-1078.	1.6	71
11	Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2046-2052.	0.8	69
12	New generation of <i>lox</i> Pâ€mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast, 2010, 27, 765-775.	0.8	68
13	Cellular Processes and Pathways That Protect Saccharomyces cerevisiae Cells against the Plasma Membrane-Perturbing Compound Chitosan. Eukaryotic Cell, 2007, 6, 600-608.	3.4	62
14	Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function. Molecular Biology of the Cell, 2011, 22, 3887-3901.	0.9	62
15	Analysis of the Seven-Member AAD Gene Set Demonstrates That Genetic Redundancy in Yeast May Be More Apparent Than Real. Genetics, 1999, 153, 1591-1600.	1.2	62
16	Disruption of seven hypothetical aryl alcohol dehydrogenase genes fromSaccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast, 1999, 15, 1681-1689.	0.8	60
17	Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biology, 2007, 8, R268.	13.9	57
18	Evolutionary Systems Biology of Amino Acid Biosynthetic Cost in Yeast. PLoS ONE, 2010, 5, e11935.	1.1	57

DANIELA DELNERI

#	Article	IF	CITATIONS
19	Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes. PLoS Genetics, 2013, 9, e1003836.	1.5	49
20	Intron Evolution in Saccharomycetaceae. Genome Biology and Evolution, 2014, 6, 2543-2556.	1.1	48
21	Whole Genome Sequencing, <i>de Novo</i> Assembly and Phenotypic Profiling for the New Budding Yeast Species <i>Saccharomyces jurei</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2967-2977.	0.8	46
22	Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. EMBO Reports, 2004, 5, 392-398.	2.0	45
23	Gene Duplication and Environmental Adaptation within Yeast Populations. Genome Biology and Evolution, 2010, 2, 591-601.	1.1	44
24	Rapid functional and evolutionary changes follow gene duplication in yeast. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171393.	1.2	41
25	History of genome editing in yeast. Yeast, 2018, 35, 361-368.	0.8	40
26	GIMS: an integrated data storage and analysis environment for genomic and functional data. Yeast, 2003, 20, 1291-1306.	0.8	39
27	Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering. Molecular Biology and Evolution, 2016, 33, 1679-1696.	3.5	36
28	Highâ€Throughput Gene Replacement in Aspergillus fumigatus. Current Protocols in Microbiology, 2019, 54, e88.	6.5	35
29	An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Research, 2020, 20, .	1.1	35
30	Impact of Chromosomal Inversions on the Yeast DAL Cluster. PLoS ONE, 2012, 7, e42022.	1.1	34
31	Novel Intronic RNA Structures Contribute to Maintenance of Phenotype in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 203, 1469-1481.	1.2	29
32	Large-scale profiling of noncoding RNA function in yeast. PLoS Genetics, 2018, 14, e1007253.	1.5	29
33	Non-coding RNAs in Saccharomyces cerevisiae: what is the function?. Biochemical Society Transactions, 2012, 40, 907-911.	1.6	28
34	Biotechnological exploitation of Saccharomyces jurei and its hybrids in craft beer fermentation uncovers new aroma combinations. Food Microbiology, 2021, 100, 103838.	2.1	26
35	Targeted metagenomics approach to capture the biodiversity of <i>Saccharomyces</i> genus in wild environments. Environmental Microbiology Reports, 2019, 11, 206-214.	1.0	25
36	Genomic Adaptation of Saccharomyces Species to Industrial Environments. Frontiers in Genetics, 2020, 11, 916.	1.1	25

DANIELA DELNERI

#	Article	IF	CITATIONS
37	Identification of secondary targets of N-containing bisphosphonates in mammalian cells via parallel competition analysis of the barcoded yeast deletion collection. Genome Biology, 2009, 10, R93.	13.9	24
38	Genomeâ€wide analysis of longevity in nutrientâ€deprived <i>Saccharomyces cerevisiae</i> reveals importance of recycling in maintaining cell viability. Environmental Microbiology, 2012, 14, 1249-1260.	1.8	21
39	Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
40	Transcriptome and Proteome Analysis of Osteocytes Treated with Nitrogen-Containing Bisphosphonates. Journal of Proteome Research, 2009, 8, 1131-1142.	1.8	20
41	Fast and Reliable PCR Amplification from <i>Aspergillus fumigatus</i> Spore Suspension Without Traditional DNA Extraction. Current Protocols in Microbiology, 2019, 54, e89.	6.5	20
42	Plasticity of Mitochondrial DNA Inheritance and its Impact on Nuclear Gene Transcription in Yeast Hybrids. Microorganisms, 2020, 8, 494.	1.6	20
43	Probing (macro)molecular transport through cell walls. Faraday Discussions, 2008, 139, 199.	1.6	18
44	Functional and transcriptional profiling of non-coding RNAs in yeast reveal context-dependent phenotypes and in trans effects on the protein regulatory network. PLoS Genetics, 2021, 17, e1008761.	1.5	17
45	Barcode technology in yeast: application to pharmacogenomics. FEMS Yeast Research, 2010, 10, 1083-1089.	1.1	15
46	Transcriptional Profile of the Industrial Hybrid <i>Saccharomyces pastorianus</i> Reveals Temperature-Dependent Allele Expression Bias and Preferential Orthologous Protein Assemblies. Molecular Biology and Evolution, 2021, 38, 5437-5452.	3.5	15
47	Osteoblastic cell secretome: A novel role for progranulin during risedronate treatment. Bone, 2014, 58, 81-91.	1.4	14
48	A resource for functional profiling of noncoding RNA in the yeast <i>Saccharomyces cerevisiae</i> . Rna, 2017, 23, 1166-1171.	1.6	14
49	Characterization and Prediction of Haploinsufficiency Using Systems-Level Gene Properties in Yeast. G3: Genes, Genomes, Genetics, 2013, 3, 1965-1977.	0.8	13
50	Induced expression of defence-related genes in barley is specific to aphid genotype. Biological Journal of the Linnean Society, 2016, 117, 672-685.	0.7	10
51	HybridMine: A Pipeline for Allele Inheritance and Gene Copy Number Prediction in Hybrid Genomes and Its Application to Industrial Yeasts. Microorganisms, 2020, 8, 1554.	1.6	8
52	Aneuploidy influences the gene expression profiles in Saccharomyces pastorianus group I and II strains during fermentation. PLoS Genetics, 2022, 18, e1010149.	1.5	8
53	Sequencing of a 40·5 kb Fragment Located on the Left Arm of Chromosome VII fromSaccharomyces cerevisiae. Yeast, 1997, 13, 55-64	0.8	6
54	Development of novel guanidinoâ€labelling derivatisation (GLaD) reagents for liquid chromatography/matrixâ€essisted laser desorption/ionisation analysis. Rapid Communications in Mass Spectrometry, 2007, 21, 3069-3076.	0.7	5

DANIELA DELNERI

#	Article	IF	CITATIONS
55	A highâ€throughput screening method forÂthe discovery of <i>Saccharomyces</i> and non― <i>Saccharomyces</i> yeasts with potential in the brewing industry. Engineering Biology, 2021, 5, 72-80.	0.8	5
56	Competition Experiments Coupled with High-Throughput Analyses for Functional Genomics Studies in Yeast. Methods in Molecular Biology, 2011, 759, 271-282.	0.4	5
57	The Use of Yeast Mutant Collections in Genome Profiling and Large-Scale Functional Analysis. Current Genomics, 2004, 5, 59-65.	0.7	5
58	Tools for the study of genome rearrangements in laboratory and industrial yeast strains. Yeast, 2002, 19, 441-448.	0.8	4
59	Systems biology of energetic and atomic costs in the yeast transcriptome, proteome, and metabolome. Nature Precedings, 2008, , .	0.1	3
60	Limb Displays of MaleSaitis barbipes(Simon, 1868) (Araneae: Salticidae). Arachnology, 2014, 16, 219-224.	0.4	3