
Julian G Mercer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471026/publications.pdf Version: 2024-02-01

IULIAN C MEDCED

#	Article	IF	CITATIONS
1	Excellence in peerâ€review: The hallmark and fundamental of a good societyâ€owned journal. Journal of Neuroendocrinology, 2022, 34, .	1.2	2
2	Editorial for RegPep2020 special issue. Journal of Neuroendocrinology, 2021, 33, e13009.	1.2	0
3	Editorial: Thirty years of Journal of Neuroendocrinology. Journal of Neuroendocrinology, 2019, 31, e12704.	1.2	0
4	A spontaneous binge-like eating model in mice using unpredictable once weekly access to palatable diets. Appetite, 2018, 126, 137-146.	1.8	7
5	Body weight loss, effective satiation and absence of homeostatic neuropeptide compensation in male Sprague Dawley rats schedule fedÂa protein crosslinked diet. Appetite, 2017, 117, 234-246.	1.8	3
6	Arcuate nucleus homeostatic systems reflect blood leptin concentration but not feeding behaviour during scheduled feeding on a highâ€fat diet in mice. Journal of Neuroendocrinology, 2017, 29, e12498.	1.2	11
7	Full4Health: Understanding food–gut–brain mechanisms across the lifespan in the regulation of hunger and satiety for health. Nutrition Bulletin, 2016, 41, 87-91.	0.8	0
8	Preclinical models for obesity research. DMM Disease Models and Mechanisms, 2016, 9, 1245-1255.	1.2	58
9	Editorial for Full4Health special issue of â€~Peptides'. Peptides, 2016, 77, 1-2.	1.2	3
10	Hunger and Satiety Mechanisms and Their Potential Exploitation in the Regulation of Food Intake. Current Obesity Reports, 2016, 5, 106-112.	3.5	85
11	Approaches to influencing food choice across the age groups: from children to the elderly. Proceedings of the Nutrition Society, 2015, 74, 149-157.	0.4	8
12	Intermittent Feeding Schedules—Behavioural Consequences and Potential Clinical Significance. Nutrients, 2014, 6, 985-1002.	1.7	5
13	"Eating addictionâ€; rather than "food addictionâ€; better captures addictive-like eating behavior. Neuroscience and Biobehavioral Reviews, 2014, 47, 295-306.	2.9	430
14	Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague–Dawley rat. Physiology and Behavior, 2014, 128, 70-79.	1.0	42
15	Hypothalamic gene expression during voluntary hypophagia in the Sprague–Dawley rat on withdrawal of the palatable liquid diet, Ensure. Physiology and Behavior, 2014, 128, 172-179.	1.0	1
16	Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in miceâ~†. Appetite, 2014, 77, 62-73.	1.8	35
17	Arcuate Nucleus Homeostatic Systems are Not Altered Immediately Prior to the Scheduled Consumption of Large, Bingeâ€Type Meals of Palatable Solid or Liquid Diet in Rats and Mice. Journal of Neuroendocrinology, 2013, 25, 357-371.	1.2	23
18	NeuroFAST — the Integrated Neurobiology of Food Intake, Addiction and Stress. Obesity Facts, 2012, 5, 293-297.	1.6	2

JULIAN G MERCER

#	Article	IF	CITATIONS
19	Leptin: Back and Forward. Journal of Neuroendocrinology, 2009, 21, 1063-1064.	1.2	0
20	Putting the diet back into diet-induced obesity: Diet-induced hypothalamic gene expression. European Journal of Pharmacology, 2008, 585, 31-37.	1.7	32
21	Hunger Does Not Diminish Over Time in Mice Under Protracted Caloric Restriction. Rejuvenation Research, 2007, 10, 533-542.	0.9	36
22	Solid and Liquid Obesogenic Diets Induce Obesity and Counter-Regulatory Changes in Hypothalamic Gene Expression in Juvenile Sprague-Dawley Rats. Journal of Nutrition, 2007, 137, 1483-1490.	1.3	29
23	Effect of flavour of liquid Ensure diet supplement on energy intake in male SD rats. Physiology and Behavior, 2006, 89, 414-419.	1.0	14
24	Diet-induced obesity in the Sprague–Dawley rat: dietary manipulations and their effect on hypothalamic neuropeptide energy balance systems. Biochemical Society Transactions, 2005, 33, 1068-1072.	1.6	22
25	Hypothalamic Energy Balance Gene Responses in the Sprague-Dawley Rat to Supplementation of High-Energy Diet with Liquid Ensure and Subsequent Transfer to Chow. Journal of Neuroendocrinology, 2005, 17, 711-719.	1.2	44
26	Hypothalamic Gene Expression Is Altered in Underweight but Obese Juvenile Male Sprague-Dawley Rats Fed a High-Energy Diet. Journal of Nutrition, 2004, 134, 1369-1374.	1.3	37
27	Photoperiodic Regulation of Leptin Sensitivity in the Siberian Hamster, Phodopus sungorus, Is Reflected in Arcuate Nucleus SOCS-3 (Suppressor of Cytokine Signaling) Gene Expression. Endocrinology, 2004, 145, 1185-1193.	1.4	93
28	Neuropeptides and anticipatory changes in behaviour and physiology: seasonal body weight regulation in the Siberian hamster. European Journal of Pharmacology, 2003, 480, 43-50.	1.7	37
29	Normal Distribution of Body Weight Gain in Male Spragueâ€Đawley Rats Fed a Highâ€Energy Diet. Obesity, 2003, 11, 1376-1383.	4.0	54
30	Early regulation of hypothalamic arcuate nucleus CART gene expression by short photoperiod in the Siberian hamster. Regulatory Peptides, 2003, 111, 129-136.	1.9	24
31	The regulation of body weight: lessons from the seasonal animal. Proceedings of the Nutrition Society, 2001, 60, 127-134.	0.4	46
32	B219/OB-R 5′-UTR and Leptin Receptor Gene-Related Protein Gene Expression in Mouse Brain and Placenta: Tissue-Specific Leptin Receptor Promoter Activity. Journal of Neuroendocrinology, 2001, 12, 649-655.	1.2	15
33	Dietary and genetic influences on susceptibility or resistance to weight gain on a high fat diet. Nutrition, Metabolism and Cardiovascular Diseases, 2001, 11, 114-7.	1.1	6
34	Anorexia in rats infected with the nematode, Nippostrongylus brasiliensis: experimental manipulations. Parasitology, 2000, 120, 641-647.	0.7	40
35	Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster. European Journal of Neuroscience, 2000, 12, 2865-2870.	1.2	124
36	Regulation of leptin receptor, POMC and AGRP gene expression by photoperiod and food deprivation in the hypothalamic arcuate nucleus of the male Siberian hamster (Phodopus sungorus). Appetite, 2000, 34, 109-111.	1.8	25

JULIAN G MERCER

#	Article	IF	CITATIONS
37	Leptin and Obesity. CNS Drugs, 2000, 14, 413-424.	2.7	17
38	Towards an Understanding of Physiological Body Mass Regulation: Seasonal Animal Models. Nutritional Neuroscience, 2000, 3, 307-320.	1.5	15
39	Appetite and parasite. Biologist, 2000, 47, 35-40.	2.0	1
40	Localization of Leptin Receptor (Ob-R) Messenger Ribonucleic Acid in the Rodent Hindbrain*. Endocrinology, 1998, 139, 29-34.	1.4	155
41	Leptin and reproduction. Proceedings of the Nutrition Society, 1998, 57, 421-427.	0.4	45

Regulation of leptin receptor and NPY gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1.3}{0.9}$ gBT /O $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1.3}{0.9}$ gBT /O $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1.3}{0.9}$ gBT /O $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1.3}{0.9}$ gBT /O $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1.3}{0.9}$ gBT /O $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1.3}{0.9}$ gBT /O $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{123}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{133}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{133}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{133}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{133}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{133}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{133}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1333}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1333}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1333}{0.9}$ gene expression in hypothalamus of leptin-treated obese (ob/ob) Tj ETQq0 0 $\underset{1333}{0.9}$ gene expressio

43	Leptin interacts with glucagon-like peptide-1 neurons to reduce food intake and body weight in rodents. FEBS Letters, 1997, 415, 134-138.	1.3	119
44	Short-day weight loss and effect of food deprivation on hypothalamic NPY and CRF mRNA in Djungarian hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R768-R776.	0.9	25
45	Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Letters, 1996, 387, 113-116.	1.3	750
46	Hypothalamic NPY and prepro-NPY mRNA in Djungarian hamsters: effects of food deprivation and photoperiod. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1995, 269, R1099-R1106.	0.9	29
47	Control of seasonality by melatonin. Proceedings of the Nutrition Society, 1994, 53, 483-493.	0.4	30
48	Seasonally Inappropriate Body Weight Induced by Food Restriction: Effect on Hypothalamic Gene Expression in Male Siberian Hamsters. , 0, .		24