Gurunathan Thangavel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1470773/publications.pdf

Version: 2024-02-01

279798 454955 2,931 30 23 30 citations g-index h-index papers 31 31 31 3771 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Rugged Soft Robots using Tough, Stretchable, and Selfâ€Healable Adhesive Elastomers. Advanced Functional Materials, 2021, 31, 2103097.	14.9	77
2	Deformable High Loading Liquid Metal Nanoparticles Composites for Thermal Energy Management. Advanced Energy Materials, 2021, 11, 2101387.	19.5	47
3	Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Science Advances, 2021, 7, .	10.3	50
4	Waterâ€Processable, Stretchable, Selfâ€Healable, Thermally Stable, and Transparent Ionic Conductors for Actuators and Sensors. Advanced Materials, 2020, 32, e1906679.	21.0	119
5	Self-healable sticky porous elastomer for gas-solid interacted power generation. Science Advances, 2020, 6, eabb4246.	10.3	88
6	A Quasiâ€Solidâ€State Tristate Reversible Electrochemical Mirror Device with Enhanced Stability. Advanced Science, 2020, 7, 1903198.	11.2	26
7	lonic Conductors: Waterâ€Processable, Stretchable, Selfâ€Healable, Thermally Stable, and Transparent lonic Conductors for Actuators and Sensors (Adv. Mater. 7/2020). Advanced Materials, 2020, 32, 2070048.	21.0	3
8	Synthesis through 3D printing: formation of 3D coordination polymers. RSC Advances, 2020, 10, 14812-14817.	3.6	17
9	Enhancing dynamic actuation performance of dielectric elastomer actuators by tuning viscoelastic effects with polar crosslinking. NPG Asia Materials, $2019,11,.$	7.9	40
10	Advances in self-healing supramolecular soft materials and nanocomposites. Nano Convergence, 2019, 6, 29.	12.1	52
11	Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nature Communications, 2019, 10, 2158.	12.8	308
12	Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy, 2019, 61, 584-593.	16.0	117
13	A Stretchable and Selfâ∈Healing Energy Storage Device Based on Mechanically and Electrically Restorative Liquidâ∈Metal Particles and Carboxylated Polyurethane Composites. Advanced Materials, 2019, 31, e1805536.	21.0	209
14	High performance polyurethane dispersion synthesized from plant oil renewable resources: A challenge in the green materials. Polymer Degradation and Stability, 2018, 150, 122-132.	5.8	38
15	<i>Diphylleia grayi</i> -Inspired Stretchable Hydrochromics with Large Optical Modulation in the Visible–Near-Infrared Region. ACS Applied Materials & Interfaces, 2018, 10, 37685-37693.	8.0	29
16	Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nature Catalysis, 2018, 1, 794-804.	34.4	124
17	Synthesis of aminosilane crosslinked cationomeric waterborne polyurethane nanocomposites and its physicochemical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 124-132.	4.7	35
18	Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes. Metals, 2017, 7, 176.	2.3	11

#	Article	IF	CITATIONS
19	Antibacterial and morphological studies of electrospun silver-impregnated polyacrylonitrile nanofibre. Oriental Journal of Chemistry, 2016, 32, 159-164.	0.3	10
20	Physicochemical Properties of Amino–Silane-Terminated Vegetable Oil-Based Waterborne Polyurethane Nanocomposites. ACS Sustainable Chemistry and Engineering, 2016, 4, 4645-4653.	6.7	103
21	Reactive Compatibilization of Biobased Polyurethane Prepolymer Toughening Polylactide Prepared by Melt Blending. Journal of Polymers and the Environment, 2016, 24, 287-297.	5.0	12
22	Development of environmental friendly castor oil-based waterborne polyurethane dispersions with polyaniline. Polymers for Advanced Technologies, 2016, 27, 1535-1540.	3.2	19
23	The influence of reactive organoclay on a biorenewable castor oil-based polyurethane prepolymers toughened polylactide nanocomposites. Polymers for Advanced Technologies, 2016, 27, 1484-1493.	3.2	15
24	Hyperbranched Polymers for Coating Applications: A Review. Polymer-Plastics Technology and Engineering, 2016, 55, 92-117.	1.9	55
25	Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Advances, 2015, 5, 11524-11533.	3.6	59
26	A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 2015, 77, 1-25.	7.6	950
27	Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Progress in Organic Coatings, 2015, 80, 39-48.	3.9	141
28	Preparation and performance evaluation of castor oil-based polyurethane prepolymer/polylactide blends. Journal of Materials Science, 2014, 49, 8016-8030.	3.7	27
29	Polyurethane conductive blends and composites: synthesis and applications perspective. Journal of Materials Science, 2013, 48, 67-80.	3.7	95
30	Synthesis, characterization and corrosion evaluation on new cationomeric polyurethane water dispersions and their polyaniline composites. Progress in Organic Coatings, 2013, 76, 639-647.	3.9	55