List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1470269/publications.pdf Version: 2024-02-01

PANIAN SINCH

#	Article	IF	CITATIONS
1	Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature Communications, 2012, 3, 1151.	5.8	1,008
2	Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature Materials, 2016, 15, 621-627.	13.3	609
3	Ultrasensitive terahertz sensing with high- <i>Q</i> Fano resonances in metasurfaces. Applied Physics Letters, 2014, 105, .	1.5	536
4	Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16, 1786.	1.7	454
5	Terahertz topological photonics for on-chip communication. Nature Photonics, 2020, 14, 446-451.	15.6	449
6	Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces. Applied Physics Letters, 2015, 106, .	1.5	427
7	Photoinduced handedness switching in terahertz chiral metamolecules. Nature Communications, 2012, 3, 942.	5.8	407
8	Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19, 6312.	1.7	370
9	Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Physical Review B, 2009, 79, .	1.1	363
10	Analogue of electromagnetically induced transparency in a terahertz metamaterial. Physical Review B, 2009, 80, .	1.1	340
11	Terahertz metamaterial with asymmetric transmission. Physical Review B, 2009, 80, .	1.1	319
12	A perfect metamaterial polarization rotator. Applied Physics Letters, 2013, 103, .	1.5	318
13	Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Applied Physics Letters, 2011, 99, .	1.5	268
14	Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Optics Letters, 2012, 37, 3366.	1.7	266
15	Graphene–Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing. Advanced Materials, 2015, 27, 6163-6169.	11.1	262
16	Realization of a three-dimensional photonic topological insulator. Nature, 2019, 565, 622-626.	13.7	254
17	Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials. Physical Review Letters, 2010, 105, 247402.	2.9	240
18	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001.	1.0	240

#	Article	IF	CITATIONS
19	Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Applied Physics Letters, 2012, 100, .	1.5	229
20	Highly flexible broadband terahertz metamaterial quarterâ€wave plate. Laser and Photonics Reviews, 2014, 8, 626-632.	4.4	217
21	Active graphene–silicon hybrid diode for terahertz waves. Nature Communications, 2015, 6, 7082.	5.8	215
22	Allâ€Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum. Advanced Materials, 2019, 31, e1901921.	11.1	210
23	Manipulating the plasmon-induced transparency in terahertz metamaterials. Optics Express, 2011, 19, 8912.	1.7	207
24	All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light: Science and Applications, 2018, 7, 28.	7.7	202
25	Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nature Communications, 2018, 9, 4056.	5.8	200
26	Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial. Advanced Optical Materials, 2016, 4, 541-547.	3.6	198
27	Symmetryâ€Protected Dual Bound States in the Continuum in Metamaterials. Advanced Optical Materials, 2019, 7, 1900383.	3.6	193
28	Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. Journal of Applied Physics, 2015, 118, .	1.1	192
29	Wide Bandgap Phase Change Material Tuned Visible Photonics. Advanced Functional Materials, 2019, 29, 1806181.	7.8	192
30	Sensing with toroidal metamaterial. Applied Physics Letters, 2017, 110, .	1.5	187
31	Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators. Applied Physics Letters, 2013, 103, .	1.5	182
32	Active Photoswitching of Sharp Fano Resonances in THz Metadevices. Advanced Materials, 2017, 29, 1603355.	11.1	180
33	Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Applied Physics Letters, 2019, 115, .	1.5	179
34	Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization. Advanced Optical Materials, 2015, 3, 1537-1543.	3.6	176
35	Efficient flat metasurface lens for terahertz imaging. Optics Express, 2014, 22, 25931.	1.7	161
36	Highly tunable optical activity in planar achiral terahertz metamaterials. Optics Express, 2010, 18, 13425.	1.7	160

#	Article	IF	CITATIONS
37	Broadband metasurface holograms: toward complete phase and amplitude engineering. Scientific Reports, 2016, 6, 32867.	1.6	160
38	Chalcogenide Phase Change Material for Active Terahertz Photonics. Advanced Materials, 2019, 31, e1808157.	11.1	159
39	Terahertz biosensing with a graphene-metamaterial heterostructure platform. Carbon, 2019, 141, 247-252.	5.4	156
40	Sharp Toroidal Resonances in Planar Terahertz Metasurfaces. Advanced Materials, 2016, 28, 8206-8211.	11.1	148
41	MoS ₂ for Ultrafast Allâ€Optical Switching and Modulation of THz Fano Metaphotonic Devices. Advanced Optical Materials, 2017, 5, 1700762.	3.6	146
42	Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Optics Letters, 2011, 36, 1230.	1.7	143
43	Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices. Advanced Materials, 2017, 29, 1605881.	11.1	140
44	Tailoring the slow light behavior in terahertz metasurfaces. Applied Physics Letters, 2015, 106, .	1.5	127
45	Active Phase Transition via Loss Engineering in a Terahertz MEMS Metamaterial. Advanced Materials, 2017, 29, 1700733.	11.1	125
46	Defectâ€Induced Fano Resonances in Corrugated Plasmonic Metamaterials. Advanced Optical Materials, 2017, 5, 1600960.	3.6	121
47	A Toroidal Metamaterial Switch. Advanced Materials, 2018, 30, 1704845.	11.1	118
48	Active Control of Nanodielectricâ€Induced THz Quasiâ€BIC in Flexible Metasurfaces: A Platform for Modulation and Sensing. Advanced Materials, 2021, 33, e2100836.	11.1	117
49	Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms. Advanced Optical Materials, 2017, 5, 1600716.	3.6	116
50	A Tunable Dispersionâ€Free Terahertz Metadevice with Pancharatnam–Berryâ€Phaseâ€Enabled Modulation and Polarization Control. Advanced Materials, 2015, 27, 6630-6636.	11.1	113
51	Ultrafast Allâ€Optical Switching of Germaniumâ€Based Flexible Metaphotonic Devices. Advanced Materials, 2018, 30, 1705331.	11.1	111
52	Terahertz superconductor metamaterial. Applied Physics Letters, 2010, 97, .	1.5	109
53	Monolayer graphene sensing enabled by the strong Fano-resonant metasurface. Nanoscale, 2016, 8, 17278-17284.	2.8	107
54	Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices. Applied Physics Letters, 2017, 111, .	1.5	107

#	Article	IF	CITATIONS
55	Ultrahighâ€ <i>Q</i> Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry. Advanced Optical Materials, 2016, 4, 457-463.	3.6	106
56	Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Scientific Reports, 2013, 3, 3291.	1.6	105
57	Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity. Nature Communications, 2018, 9, 369.	5.8	103
58	Optically thin terahertz metamaterials. Optics Express, 2008, 16, 6537.	1.7	101
59	Strong influence of packing density in terahertz metamaterials. Applied Physics Letters, 2010, 97, .	1.5	100
60	Toroidal versus Fano Resonances in High <i>Q</i> planar THz Metamaterials. Advanced Optical Materials, 2016, 4, 2119-2125.	3.6	100
61	Dual-surface flexible THz Fano metasensor. Applied Physics Letters, 2017, 111, .	1.5	99
62	Extended Bound States in the Continuum with Symmetryâ€Broken Terahertz Dielectric Metasurfaces. Advanced Optical Materials, 2021, 9, 2002001.	3.6	99
63	Asymmetric planar terahertz metamaterials. Optics Express, 2010, 18, 13044.	1.7	98
64	Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Science Advances, 2021, 7, .	4.7	98
65	Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Scientific Reports, 2012, 2, 737.	1.6	97
66	Nanofluidic terahertz metasensor for sensing in aqueous environment. Applied Physics Letters, 2018, 113, .	1.5	97
67	The Fano Resonance in Symmetry Broken Terahertz Metamaterials. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 820-826.	2.0	95
68	Lattice-induced transparency in planar metamaterials. Physical Review B, 2016, 94, .	1.1	95
69	Excitons in 2D perovskites for ultrafast terahertz photonic devices. Science Advances, 2020, 6, eaax8821.	4.7	95
70	Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial. Applied Physics Letters, 2013, 102, .	1.5	94
71	Effect of metal permittivity on resonant properties of terahertz metamaterials. Optics Letters, 2008, 33, 1506.	1.7	91
72	Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Applied Physics Letters, 2011, 99, .	1.5	91

#	Article	IF	CITATIONS
73	Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry. Advanced Optical Materials, 2015, 3, 1176-1183.	3.6	87
74	Perovskite as a Platform for Active Flexible Metaphotonic Devices. ACS Photonics, 2017, 4, 1595-1601.	3.2	86
75	A Superconducting Dual hannel Photonic Switch. Advanced Materials, 2018, 30, e1801257.	11.1	86
76	Dual control of active graphene–silicon hybrid metamaterial devices. Carbon, 2015, 90, 146-153.	5.4	85
77	Ge ₂ Sb ₂ Te ₅ â€Based Tunable Perfect Absorber Cavity with Phase Singularity at Visible Frequencies. Advanced Materials, 2018, 30, e1706696.	11.1	84
78	Plasmon-induced transparency in twisted Fano terahertz metamaterials. Optical Materials Express, 2011, 1, 391.	1.6	82
79	Solutionâ€Processed Lead Iodide for Ultrafast Allâ€Optical Switching of Terahertz Photonic Devices. Advanced Materials, 2019, 31, e1901455.	11.1	81
80	Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Scientific Reports, 2014, 4, 6340.	1.6	80
81	Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles. Journal of Applied Physics, 2017, 121, .	1.1	80
82	Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials. Applied Physics Letters, 2012, 101, 071108.	1.5	79
83	Electromagnetically induced absorption in a three-resonator metasurface system. Scientific Reports, 2015, 5, 10737.	1.6	78
84	A multiband perfect absorber based on hyperbolic metamaterials. Scientific Reports, 2016, 6, 26272.	1.6	77
85	Spiral-type terahertz antennas and the manifestation of the Mushiake principle. Optics Express, 2009, 17, 9971.	1.7	76
86	Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials. Nanophotonics, 2012, 1, 117-123.	2.9	75
87	Ultra-high <i>Q</i> even eigenmode resonance in terahertz metamaterials. Applied Physics Letters, 2015, 106, .	1.5	75
88	Terahertz Microfluidic Sensing with Dualâ€Torus Toroidal Metasurfaces. Advanced Optical Materials, 2021, 9, 2100024.	3.6	75
89	Increased frequency shifts in high aspect ratio terahertz split ring resonators. Applied Physics Letters, 2009, 94, .	1.5	74
90	Phaseâ€Changeâ€Materialâ€Based Low‣oss Visibleâ€Frequency Hyperbolic Metamaterials for Ultrasensitive Labelâ€Free Biosensing. Advanced Optical Materials, 2019, 7, 1900081.	3.6	74

#	Article	IF	CITATIONS
91	Spatiotemporal Dielectric Metasurfaces for Unidirectional Propagation and Reconfigurable Steering of Terahertz Beams. Advanced Materials, 2020, 32, e2001418.	11.1	74
92	Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Optics Express, 2017, 25, 14089.	1.7	73
93	Terahertz Sensing with Optimized <i>Q</i> / <i>V</i> _{eff} Metasurface Cavities. Advanced Optical Materials, 2020, 8, 1902025.	3.6	73
94	Shaping Highâ€ <i>Q</i> Planar Fano Resonant Metamaterials toward Futuristic Technologies. Advanced Optical Materials, 2018, 6, 1800502.	3.6	70
95	Enhancing the Angular Sensitivity of Plasmonic Sensors Using Hyperbolic Metamaterials. Advanced Optical Materials, 2016, 4, 1767-1772.	3.6	69
96	Latticeâ€Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces. Advanced Optical Materials, 2020, 8, 1901572.	3.6	69
97	Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices. Applied Physics Letters, 2016, 108, .	1.5	67
98	Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial. Advanced Optical Materials, 2018, 6, 1800141.	3.6	67
99	Terahertz superconducting plasmonic hole array. Optics Letters, 2010, 35, 3586.	1.7	66
100	The impact of nearest neighbor interaction on the resonances in terahertz metamaterials. Applied Physics Letters, 2009, 94, 021116.	1.5	65
101	A close-ring pair terahertz metamaterial resonating at normal incidence. Optics Express, 2009, 17, 20307.	1.7	65
102	Controlling metamaterial resonances via dielectric and aspect ratio effects. Applied Physics Letters, 2010, 97, .	1.5	65
103	Brewster Modeâ€Enhanced Sensing with Hyperbolic Metamaterial. Advanced Optical Materials, 2019, 7, 1900680.	3.6	64
104	Tailored resonator coupling for modifying the terahertz metamaterial response. Optics Express, 2011, 19, 10679.	1.7	61
105	Reconfigurable Digital Metamaterial for Dynamic Switching of Terahertz Anisotropy. Advanced Optical Materials, 2016, 4, 391-398.	3.6	60
106	Highâ€∢i>Q Plasmonic Fano Resonance for Multiband Surfaceâ€Enhanced Infrared Absorption of Molecular Vibrational Sensing. Advanced Optical Materials, 2017, 5, 1600559.	3.6	59
107	Polarization-Independent Plasmon-Induced Transparency in a Fourfold Symmetric Terahertz Metamaterial. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 8400707-8400707.	1.9	58
108	Accessing the Highâ€ <i>Q</i> Dark Plasmonic Fano Resonances in Superconductor Metasurfaces. Advanced Optical Materials, 2016, 4, 1875-1881.	3.6	58

#	Article	IF	CITATIONS
109	Cryogenic temperatures as a path toward high-Q terahertz metamaterials. Applied Physics Letters, 2010, 96, .	1.5	57
110	Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces. Applied Physics Letters, 2014, 105, .	1.5	57
111	Valley Kink States and Topological Channel Intersections in Substrateâ€Integrated Photonic Circuitry. Laser and Photonics Reviews, 2019, 13, 1900159.	4.4	57
112	Random terahertz metamaterials. Journal of Optics (United Kingdom), 2010, 12, 015101.	1.0	55
113	Superconductor photonics. Nature Photonics, 2014, 8, 679-680.	15.6	55
114	Anomalous Surface Wave Launching by Handedness Phase Control. Advanced Materials, 2015, 27, 7123-7129.	11.1	54
115	Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules. Applied Physics Letters, 2016, 109, .	1.5	54
116	Volatile Ultrafast Switching at Multilevel Nonvolatile States of Phase Change Material for Active Flexible Terahertz Metadevices. Advanced Functional Materials, 2021, 31, 2100200.	7.8	53
117	A broadband planar terahertz metamaterial with nested structure. Optics Express, 2011, 19, 15817.	1.7	52
118	Mieâ€Resonant Membrane Huygens' Metasurfaces. Advanced Functional Materials, 2020, 30, 1906851.	7.8	52
119	Topological sensor on a silicon chip. Applied Physics Letters, 2022, 121, .	1.5	51
120	High- <i>Q</i> lattice mode matched structural resonances in terahertz metasurfaces. Applied Physics Letters, 2016, 109, .	1.5	48
121	Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics, 2020, 10, 295-314.	2.9	48
122	Active Ultrahighâ€∢i>Q (0.2 × 10 ⁶) THz Topological Cavities on a Chip. Advanced Materials, 2022, 34, e2202370.	11.1	48
123	Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials. Annalen Der Physik, 2016, 528, 352-357.	0.9	47
124	Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials. Scientific Reports, 2016, 6, 20801.	1.6	47
125	Lattice induced strong coupling and line narrowing of split resonances in metamaterials. Applied Physics Letters, 2018, 112, .	1.5	46
126	High Mobility 3D Dirac Semimetal (Cd ₃ As ₂) for Ultrafast Photoactive Terahertz Photonics. Advanced Functional Materials, 2021, 31, 2011011.	7.8	46

#	Article	IF	CITATIONS
127	Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials. Applied Physics Letters, 2011, 98, 121114.	1.5	45
128	Universal behaviour of high-Q Fano resonances in metamaterials: terahertz to near-infrared regime. Nano Convergence, 2018, 5, 5.	6.3	44
129	Active Control of Asymmetric Fano Resonances with Graphene–Siliconâ€Integrated Terahertz Metamaterials. Advanced Materials Technologies, 2020, 5, 1900840.	3.0	44
130	Guidedâ€Mode Resonances in Allâ€Đielectric Terahertz Metasurfaces. Advanced Optical Materials, 2020, 8, 1900959.	3.6	43
131	An active hybrid plasmonic metamaterial. Optical Materials Express, 2012, 2, 31.	1.6	42
132	Generalized Brewster Angle Effect in Thin-Film Optical Absorbers and Its Application for Graphene Hydrogen Sensing. ACS Photonics, 2019, 6, 1610-1617.	3.2	42
133	Electrically Programmable Terahertz Diatomic Metamolecules for Chiral Optical Control. Research, 2019, 2019, 7084251.	2.8	42
134	Dynamic mode coupling in terahertz metamaterials. Scientific Reports, 2015, 5, 10823.	1.6	41
135	Toroidal metasurfaces in a 2D flatland. Reviews in Physics, 2020, 5, 100040.	4.4	39
136	Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling. Optics Express, 2015, 23, 29222.	1.7	38
137	Novel THz Metamaterial Designs: From Near- and Far-Field Coupling to High-Q Resonances. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 772-782.	2.0	37
138	Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial. Optics Letters, 2017, 42, 2106.	1.7	37
139	Nonlinear high-temperature superconducting terahertz metamaterials. New Journal of Physics, 2013, 15, 105016.	1.2	35
140	Nearâ€Field Inductive Coupling Induced Polarization Control in Metasurfaces. Advanced Optical Materials, 2016, 4, 848-852.	3.6	35
141	Active MEMS metamaterials for THz bandwidth control. Applied Physics Letters, 2017, 110, .	1.5	35
142	Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial. Journal Physics D: Applied Physics, 2015, 48, 035104.	1.3	34
143	Tailoring the multipoles in THz toroidal metamaterials. Applied Physics Letters, 2017, 111, .	1.5	34
144	Toroidal and magnetic Fano resonances in planar THz metamaterials. Journal of Applied Physics, 2017, 122, .	1.1	34

#	Article	IF	CITATIONS
145	Surface Lattice Resonances in THz Metamaterials. Photonics, 2019, 6, 75.	0.9	34
146	Anomalous terahertz transmission in bow-tie plasmonic antenna apertures. Optics Letters, 2011, 36, 2901.	1.7	33
147	Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions. Applied Physics Letters, 2017, 111, .	1.5	33
148	Dynamic Color Generation with Electrically Tunable Thin Film Optical Coatings. Nano Letters, 2021, 21, 10070-10075.	4.5	33
149	Terahertz Metamaterials with Ultrahigh Angular Sensitivity. Advanced Optical Materials, 2015, 3, 642-645.	3.6	32
150	Highâ€ <i>Q</i> Whisperingâ€Galleryâ€Modeâ€Based Plasmonic Fano Resonances in Coupled Metallic Metasurfaces at Near Infrared Frequencies. Advanced Optical Materials, 2016, 4, 1295-1301.	3.6	32
151	Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano–Lorentzian Metasurfaces: A Classical Analog of a Fourâ€Level Tripod Quantum System. Advanced Optical Materials, 2016, 4, 1179-1185.	3.6	32
152	Frequencyâ€Agile Temporal Terahertz Metamaterials. Advanced Optical Materials, 2020, 8, 2000101.	3.6	32
153	Terahertz Band Communications With Topological Valley Photonic Crystal Waveguide. Journal of Lightwave Technology, 2021, 39, 7609-7620.	2.7	32
154	Near Field Coupling in Passive and Active Terahertz Metamaterial Devices. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 783-790.	2.0	31
155	A Metamaterial Analog of the Ising Model. Advanced Materials, 2018, 30, e1804210.	11.1	31
156	Nonlinear THzâ€Nano Metasurfaces. Advanced Functional Materials, 2021, 31, 2100463.	7.8	31
157	Bidirectional reconfiguration and thermal tuning of microcantilever metamaterial device operating from 77 K to 400 K. Applied Physics Letters, 2017, 111, .	1.5	30
158	Electrically Tunable Singular Phase and Goos–Hächen Shifts in Phaseâ€Changeâ€Materialâ€Based Thinâ€Film Coatings as Optical Absorbers. Advanced Materials, 2021, 33, e2006926.	11.1	30
159	A review of terahertz plasmonics in subwavelength holes on conducting films. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 8400416-8400416.	1.9	29
160	Giant enhancement in Goos-HÃ ¤ chen shift at the singular phase of a nanophotonic cavity. Applied Physics Letters, 2018, 112, .	1.5	29
161	Ultrafast Photoâ€Thermal Switching of Terahertz Spin Currents. Advanced Functional Materials, 2021, 31, 2010453.	7.8	29
162	A Metamaterial-Based Terahertz Low-Pass Filter With Low Insertion Loss and Sharp Rejection. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 832-837.	2.0	28

#	Article	IF	CITATIONS
163	Terahertz MEMS metadevices. Journal of Micromechanics and Microengineering, 2021, 31, 113001.	1.5	28
164	Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials. Journal of Applied Physics, 2015, 118, .	1.1	27
165	Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems. Journal of Nanomaterials, 2016, 2016, 1-21.	1.5	27
166	Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces. Applied Physics Letters, 2016, 108, .	1.5	27
167	Near-field surface plasmons on quasicrystal metasurfaces. Scientific Reports, 2016, 6, 26.	1.6	27
168	Materials for Terahertz Optical Science and Technology. Advanced Optical Materials, 2020, 8, 1901984.	3.6	26
169	Influence of film thickness in THz active metamaterial devices: A comparison between superconductor and metal split-ring resonators. Applied Physics Letters, 2013, 103, .	1.5	25
170	Magnetic Hyperbolic Metasurface: Concept, Design, and Applications. Advanced Science, 2018, 5, 1801495.	5.6	24
171	Large-Area Silver–Stibnite Nanoporous Plasmonic Films for Label-Free Biosensing. ACS Applied Materials & Interfaces, 2018, 10, 34991-34999.	4.0	24
172	Polarization‧ensitive Dielectric Membrane Metasurfaces. Advanced Optical Materials, 2020, 8, 2000555.	3.6	24
173	Tailoring terahertz plasmons with silver nanorod arrays. Scientific Reports, 2013, 3, .	1.6	23
174	Impact of conductivity on Lorentzian and Fano resonant high- <i>Q</i> THz metamaterials: Superconductor, metal and perfect electric conductor. Journal of Applied Physics, 2017, 122, .	1.1	23
175	Topological integrated circuits for 5G and 6G. Nature Electronics, 2022, 5, 261-262.	13.1	23
176	Colorâ€ S ensitive Ultrafast Optical Modulation and Switching of Terahertz Plasmonic Devices. Advanced Optical Materials, 2018, 6, 1800030.	3.6	22
177	Electrically Tunable All-PCM Visible Plasmonics. Nano Letters, 2021, 21, 4044-4050.	4.5	21
178	Effective properties of terahertz double split-ring resonators at oblique incidence. Journal of the Optical Society of America B: Optical Physics, 2009, 26, B143.	0.9	20
179	Microfluidics Integrated Lithographyâ€Free Nanophotonic Biosensor for the Detection of Small Molecules. Advanced Optical Materials, 2019, 7, 1801313.	3.6	20
180	Coupling Schemes in Terahertz Planar Metamaterials. International Journal of Optics, 2012, 2012, 1-12.	0.6	18

#	Article	IF	CITATIONS
181	Enhanced Q-factor in Optimally Coupled Macrocell THz Metamaterials: Effect of Spatial Arrangement. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 8400807-8400807.	1.9	18
182	Electromechanically Tunable Frequencyâ€egile Metamaterial Bandpass Filters for Terahertz Waves. Advanced Optical Materials, 2022, 10, 2101544.	3.6	18
183	Electric-field control of nonlinear THz spintronic emitters. Nature Communications, 2022, 13, .	5.8	18
184	Guided-mode resonances in flexible 2D terahertz photonic crystals. Optica, 2020, 7, 537.	4.8	17
185	Collective coherence in nearest neighbor coupled metamaterials: A metasurface ruler equation. Journal of Applied Physics, 2015, 118, .	1.1	16
186	Independent Tailoring of Superâ€Radiant and Subâ€Radiant Modes in Highâ€ <i>Q</i> Plasmonic Fano Resonant Metasurfaces. Advanced Optical Materials, 2016, 4, 1860-1866.	3.6	16
187	Temporal loss boundary engineered photonic cavity. Nature Communications, 2021, 12, 6940.	5.8	16
188	High- <i>Q</i> plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites. Journal of Applied Physics, 2017, 122, .	1.1	15
189	Photoswitchable Anapole Metasurfaces. Advanced Optical Materials, 2022, 10, .	3.6	14
190	Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications. Optics Express, 2022, 30, 27763.	1.7	13
191	Ultra-high terahertz index in deep subwavelength coupled bi-layer free-standing flexible metamaterials. Journal of Applied Physics, 2017, 121, .	1.1	12
192	High-Q Fano resonances via direct excitation of an antisymmetric dark mode. Optics Letters, 2018, 43, 3818.	1.7	12
193	Dynamic properties of high-Tc superconducting nano-junctions made with a focused helium ion beam. Scientific Reports, 2020, 10, 10256.	1.6	12
194	Nonradiative and Radiative Resonances in Coupled Metamolecules. Advanced Optical Materials, 2016, 4, 252-258.	3.6	11
195	Highly monodisperse zwitterion functionalized non-spherical polymer particles with tunable iridescence. RSC Advances, 2019, 9, 27199-27207.	1.7	10
196	Attenuated Total Reflection for Terahertz Modulation, Sensing, Spectroscopy and Imaging Applications: A Review. Applied Sciences (Switzerland), 2020, 10, 4688.	1.3	10
197	Spaceâ€Time Wave Packets from Smithâ€Purcell Radiation. Advanced Science, 2021, 8, e2100925.	5.6	10
198	Terahertz spintronic magnetometer (TSM). Applied Physics Letters, 2022, 120, .	1.5	10

#	Article	IF	CITATIONS
199	Special issue on mid-infrared and THz photonics. Journal of Optics (United Kingdom), 2014, 16, 090201.	1.0	9
200	Electrically Programmable Terahertz Diatomic Metamolecules for Chiral Optical Control. Research, 2019, 2019, 1-11.	2.8	9
201	Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation. Chinese Optics Letters, 2013, 11, 011602-11606.	1.3	9
202	Super-collimation and negative refraction in hyperbolic Van der Waals superlattices. Optics Communications, 2019, 440, 150-154.	1.0	8
203	Active Energyâ€Efficient Terahertz Metasurfaces Based on Enhanced Inâ€Plane Electric Field Density. Advanced Optical Materials, 2022, 10, .	3.6	8
204	Wideâ€Angle Tunable Critical Coupling in Nanophotonic Optical Coatings with Low‣oss Phase Change Material. Small, 2022, 18, .	5.2	7
205	Resonance properties of THz plasmonic dipole-bowtie antenna array: The critical role of the substrate. Chinese Physics B, 2014, 23, 128702.	0.7	6
206	New Directions in Thin Film Nanophotonics. Progress in Optical Science and Photonics, 2019, , .	0.3	6
207	A terahertz Brewster switch based on superconductor hyperbolic metamaterial. Journal of Applied Physics, 2020, 128, .	1.1	5
208	Hyperbolic dispersion metamaterials and metasurfaces. EPJ Applied Metamaterials, 2020, 7, 11.	0.8	5
209	Ultrafast THz photophysics of solvent engineered triple-cation halide perovskites. Journal of Applied Physics, 2018, 124, .	1.1	4
210	Thin-film sensing with Terahertz split-ring resonators. , 2008, , .		3
211	Metamaterials: Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial (Advanced Optical Materials 4/2016). Advanced Optical Materials, 2016, 4, 540-540.	3.6	3
212	Nonlinear THzâ€Nano Metasurfaces: Nonlinear THzâ€Nano Metasurfaces (Adv. Funct. Mater. 24/2021). Advanced Functional Materials, 2021, 31, 2170170.	7.8	3
213	Ultrasensitive Detection of Heavy Metal Ions with Scalable Singular Phase Thin Film Optical Coatings. Advanced Optical Materials, 2022, 10, .	3.6	3
214	Negative index in chiral metamaterials. , 2011, , .		2
215	Thermal and ultrafast optical tuning of ultrathin high-temperature superconducting terahertz metamaterials. Proceedings of SPIE, 2012, , .	0.8	2
216	Resonant field enhancement of terahertz waves in subwavelength plasmonic structures. , 2013, , 272-294.		2

0

#	Article	IF	CITATIONS
217	Spectral properties of thick split ring resonators in the THz regime. Proceedings of SPIE, 2008, , .	0.8	1
218	Tailored resonator coupling for modifying the fundamental resonance in laterally coupled terahertz metamaterials. , 2011, , .		1
219	Electromagnetically induced transparency in an individual Fano resonator metamaterial. , 2012, , .		1
220	Observation of electromagnetically induced absorption in a three-resonator system. , 2014, , .		1
221	MANIPULATING THE POLARIZATION OF TERAHERTZ WAVES WITH METAMATERIAL DEVICES. Journal of Molecular and Engineering Materials, 2014, 02, 1440008.	0.9	1
222	Corrections to "Near field coupling in passive and active teraHertz metamaterial devices" [Nov 13 783-790]. IEEE Transactions on Terahertz Science and Technology, 2014, 4, 400-400.	2.0	1
223	Phase Change Material-Based Nanophotonic Cavities for Reconfigurable Photonic Device Applications. Progress in Optical Science and Photonics, 2019, , 45-58.	0.3	1
224	Thin Substrates for Enhanced Metamaterial Sensing Applications. , 2011, , .		1
225	50-Gbit/s Terahertz Communication using a Valley Photonic Crystal Waveguide. , 2020, , .		1
226	Electromagnetically Induced Transparency in a Terahertz Metamaterial. , 2010, , .		0
227	Active terahertz metamaterials. , 2011, , .		Ο
228	LC resonance modulation in asymmetric double split-ring resonator metamaterials. , 2011, , .		0
229	Temperature tunable behavior of planar terahertz metamaterials fabricated on bulk strontium titanate substrates. , 2011, , .		Ο
230	Diffractive coupling engineered sharp LC resonance in terahertz metamaterials. , 2011, , .		0
231	Tunable and Nonlinear Microwave and Terahertz Metamaterials. , 2011, , .		Ο
232	Metamaterial induced terahertz transparency and absorption. , 2014, , .		0
233	Active graphene-silicon hybrid metamaterial devices. , 2014, , .		0

234 Engineering the meta-resonances toward functional terahertz devices. , 2015, , .

#	Article	IF	CITATIONS
235	Active terahertz modulations based on graphene-silicon hybrid structures. , 2015, , .		0
236	Particle-trap array on metamaterial for selective detection in terahertz region. , 2016, , .		0
237	Active control of electromagnetically induced transparency analogue and slow light phenomena via MEMS based terahertz metamaterials. , 2016, , .		0
238	Tunable dispersion-free polarization control with terahertz metamaterials. , 2016, , .		0
239	Planar toroidal metamaterials. , 2016, , .		0
240	Tailoring the Fano resonances in terahertz metamaterials. , 2016, , .		0
241	Reconfigurable MEMS metamaterial based active THz photonics. , 2019, , .		0
242	Superconductor Terahertz Photonics. , 2019, , .		0
243	Extremely Low threshold Optical Switching and Modulation of Ion-irradiated High-Tc Superconducting Metamaterial. , 2019, , .		0
244	Resonant properties of terahertz metamaterials of sub-skin-depth thicknesses. , 2008, , .		0
245	Influence of metal permittivity on transmission properties of terahertz metamaterials. , 2008, , .		0
246	High Aspect ratio metamaterials for enhanced tunability and sensitivity. , 2009, , .		0
247	Planar terahertz metamaterial at cryogenic temperatures. , 2010, , .		0
248	Tuning the Resonance in Superconducting Terahertz Metamaterials. , 2011, , .		0
249	Terahertz superconducting plasmonics and metamaterials. , 2011, , .		0
250	ULTRAFAST OPTICAL TUNING OF SUPERCONDUCTING TERAHERTZ METAMATERIALS. , 2012, , .		0
251	Ultrafast control of near field coupling in terahertz metamaterials. , 2013, , .		0
252	Spin induced toroidal dipole in terahertz metasurfaces. , 2017, , .		0

#	Article	IF	CITATIONS
253	Active high-Q dielectric terahertz supercavities. , 2018, , .		Ο
254	Realization of Point-of-Darkness and Extreme Phase Singularity in Nanophotonic Cavities. Progress in Optical Science and Photonics, 2019, , 29-44.	0.3	0
255	Dielectric Membrane Mie-Resonant Metasurfaces. , 2019, , .		Ο
256	Reconfigurable MEMS metasurface for active tuning of Fano resonance and logic gate operations at THz frequencies. , 2019, , .		0
257	Manifestation of Plasmon-Induced Transparency in Photonic Crystal Slab Coupled to Terahertz Metasurface. , 2019, , .		Ο
258	Giant Kinetic Inductance in High-TC Superconductor Based Terahertz Metacavities. , 2020, , .		0