Dah-Shyang Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1469918/publications.pdf

Version: 2024-02-01

126907 197818 3,317 147 33 49 citations g-index h-index papers 148 148 148 4144 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Solid-State Lithium Metal Battery of Low Capacity Fade Enabled by a Composite Electrolyte with Sulfur-Containing Oligomers. ACS Applied Materials & Interfaces, 2022, 14, 16136-16146.	8.0	2
2	A lithium solid electrolyte of acrylonitrile copolymer with thiocarbonate moiety and its potential battery application. Electrochimica Acta, 2021, 365, 137357.	5. 2	9
3	Influences of Growth Species and Inclusions on the Current–Voltage Behavior of Plasma Electrolytic Oxidation: A Review. Coatings, 2021, 11, 270.	2.6	14
4	Lithium-Ion Hybrid Capacitor with a Scaffold Electrode of Tin Sulfide and Tin Metal and Its Electrolyte Issue. Journal of Physical Chemistry C, 2020, 124, 21909-21918.	3.1	7
5	Correlation between Defect Density and Corrosion Parameter of Electrochemically Oxidized Aluminum. Coatings, 2020, 10, 20.	2.6	8
6	Phenylphenol-Derived Carbon and Antimony-Coated Carbon Nanotubes as the Electroactive Materials of Lithium-Ion Hybrid Capacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34948-34956.	8.0	11
7	Corrosion passivation of magnesium alloy with the duplex coatings of plasma electrolytic oxidation and tetrafluoroethylene-based polymers. Surface and Coatings Technology, 2019, 366, 15-23.	4.8	29
8	Probe the micro arc softening phenomenon with pulse transient analysis in plasma electrolytic oxidation. Surface and Coatings Technology, 2019, 357, 235-243.	4.8	39
9	BSCF/GDC as a refined cathode to the single-chamber solid oxide fuel cell based on a LAMOX electrolyte. Ceramics International, 2018, 44, 1726-1730.	4.8	12
10	PEM fuel cells of poly(2,5-benzimidazole) ABPBI membrane electrolytes doped with phosphoric acid and metal phosphates. Materials Chemistry and Physics, 2018, 216, 485-490.	4.0	17
11	Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation. Metals, 2018, 8, 105.	2.3	78
12	An asymmetric capacitor of internal parallel hybrid electrodes with amphoteric lithium vanadium phosphate. Journal of Solid State Electrochemistry, 2017, 21, 839-847.	2.5	2
13	Coloring the aluminum alloy surface in plasma electrolytic oxidation with the green pigment colloid. Surface and Coatings Technology, 2017, 321, 164-170.	4.8	12
14	Particle Size Influences on the Coating Microstructure through Green Chromia Inclusion in Plasma Electrolytic Oxidation. ACS Applied Materials & Electrolytic Oxidation. ACS Applied Materials & Electrolytic Oxidation.	8.0	23
15	Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size. International Journal of Nanomedicine, 2016, 11, 2531.	6.7	10
16	A composite electrode of tin dioxide and carbon nanotubes and its role as negative electrode in lithium ion hybrid capacitor. Electrochimica Acta, 2016, 209, 332-340.	5.2	28
17	Coloration of the aluminum alloy surface with dye emulsions while growing a plasma electrolytic oxide layer. Surface and Coatings Technology, 2016, 287, 61-66.	4.8	20
18	Lithium tin phosphate anode partially reduced through prelithiation for hybrid capacitor application. Journal of Alloys and Compounds, 2015, 627, 186-191.	5 . 5	7

#	Article	IF	CITATIONS
19	A prelithiated lithium vanadate anode and the mass balancing of its hybrid capacitor. RSC Advances, 2015, 5, 69176-69183.	3.6	25
20	Influences of urea and sodium nitrite on surface coating of plasma electrolytic oxidation. Applied Surface Science, 2015, 356, 135-141.	6.1	15
21	The lithium ion capacitor with a negative electrode of lithium titanium zirconium phosphate. Journal of Power Sources, 2015, 274, 15-21.	7.8	12
22	Properties of 10% Dy-doped La2Mo2O9 and its electrolyte performance in single chamber solid oxide fuel cell. Journal of Alloys and Compounds, 2014, 582, 780-785.	5.5	18
23	Effects of ion insertion on cycling performance of miniaturized electrochemical capacitor of carbon nanotubes array. Nanotechnology, 2014, 25, 425401.	2.6	1
24	Proton exchange membrane fuel cell of polybenzimidazole electrolyte doped with phosphoric acid and antimony chloride. International Journal of Hydrogen Energy, 2014, 39, 10245-10252.	7.1	6
25	Cycle stability of the electrochemical capacitors patterned with vertically aligned carbon nanotubes in an LiPF6-based electrolyte. Nanoscale, 2013, 5, 8122.	5.6	27
26	Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2013, 38, 5655-5664.	7.1	36
27	Surface oxides of Ir(111) prepared by gas-phase oxygen atoms. Surface Science, 2012, 606, 1965-1971.	1.9	24
28	Miniature asymmetric ultracapacitor of patterned carbon nanotubes and hydrous ruthenium dioxide. Nanotechnology, 2012, 23, 485402.	2.6	7
29	Upgrading the performance of La2Mo2O9-based solid oxide fuel cell under single chamber conditions. International Journal of Hydrogen Energy, 2012, 37, 9792-9800.	7.1	4
30	Power loss and energy density of the asymmetric ultracapacitor loaded with molybdenum doped manganese oxide. Electrochimica Acta, 2012, 68, 95-102.	5.2	24
31	Electrochemical capacitors of miniature size with patterned carbon nanotubes and cobalt hydroxide. Journal of Power Sources, 2012, 205, 510-515.	7.8	46
32	Deposition and characterization of IrOx nanofoils on carbon nanotube templates by reactive magnetron sputtering. Thin Solid Films, 2012, 520, 2409-2413.	1.8	16
33	Deposition and structural characterization of nanostructured RuO2 on rutile-TiO2/sapphire(100) templates by reactive radio frequency magnetron sputtering. Thin Solid Films, 2012, 520, 2810-2813.	1.8	1
34	Preparation and characterization of iridium dioxide–carbon nanotube nanocomposites for supercapacitors. Nanotechnology, 2011, 22, 115706.	2.6	58
35	La ₂ Mo ₂ O ₉ â€Based Electrolyte: Ion Conductivity and Anodeâ€Supported Cell under Single Chamber Conditions. Journal of the American Ceramic Society, 2011, 94, 806-811.	3.8	15
36	Characterization of IrO2/CNT nanocomposites. Journal of Materials Science: Materials in Electronics, 2011, 22, 890-894.	2.2	14

#	Article	IF	Citations
37	Proton conductors of cerium pyrophosphate for intermediate temperature fuel cell. Electrochimica Acta, 2011, 56, 6654-6660.	5.2	37
38	Enhance the oxygen reduction activity of ruthenium selenide pyrite catalyst with nitrogen-doped carbon. International Journal of Hydrogen Energy, 2011, 36, 7381-7390.	7.1	8
39	Electrochemical micro-capacitors of patterned electrodes loaded with manganese oxide and carbon nanotubes. Journal of Power Sources, 2011, 196, 5761-5768.	7.8	74
40	A nanostructured electrode of $IrO < sub > < i > x < / i > < / sub > foil on the carbon nanotubes for supercapacitors. Nanotechnology, 2011, 22, 355708.$	2.6	22
41	Deoxygenation of IrO2(110) surface: Core-level spectroscopy and density functional theory calculation. Surface Science, 2010, 604, 118-124.	1.9	21
42	Carbon supported Ru1â^'xFexSey electrocatalysts of pyrite structure for oxygen reduction reaction. International Journal of Hydrogen Energy, 2010, 35, 6508-6517.	7.1	27
43	CO tolerance and catalytic activity of Pt/Sn/SnO2 nanowires loaded on a carbon paper. Electrochimica Acta, 2010, 55, 2116-2122.	5.2	31
44	Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochimica Acta, 2010, 55, 5768-5774.	5.2	66
45	Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire (100) and (012) substrates by reactive magnetron sputtering. Thin Solid Films, 2010, 518, 4121-4125.	1.8	12
46	Hybrid Electrochemical Capacitor of IrO ₂ Nanocrystal and Hydrous RuO ₂ . Science of Advanced Materials, 2010, 2, 552-559.	0.7	5
47	(301) and (101) RuO2 twins on nanostructural rutile TiO2 template. Materials Chemistry and Physics, 2009, 117, 544-549.	4.0	4
48	Preparation and oxygen reduction activity of stable RuSex/C catalyst with pyrite structure. Electrochimica Acta, 2009, 54, 4297-4304.	5.2	34
49	Raman spectroscopy study of the phase transformation on nanocrystalline titania films prepared via metal organic vapour deposition. Journal of Materials Science: Materials in Electronics, 2009, 20, 303-306.	2.2	33
50	Growth and characterization of well-aligned rutile TiO2 nanocrystals on sapphire substrates via metal organic vapour deposition. Journal of Materials Science: Materials in Electronics, 2009, 20, 332-335.	2.2	5
51	A ceria layer as diffusion barrier between LAMOX and lanthanum strontium cobalt ferrite along with the impedance analysis. Solid State Ionics, 2009, 180, 412-417.	2.7	19
52	Density Functional Theory Study of the Oxidation of Ammonia on RuO ₂ (110) Surface. Journal of Physical Chemistry C, 2009, 113, 17411-17417.	3.1	26
53	Structural Features of SnO ₂ Nanowires and Raman Spectroscopy Analysis. Crystal Growth and Design, 2009, 9, 3958-3963.	3.0	76
54	Synthesis and structural characterization of twinned V-shaped IrO2 nanowedges on TiO2 nanorods via MOCVD. Journal of Alloys and Compounds, 2009, 480, 107-110.	5.5	7

#	Article	IF	CITATIONS
55	Growth and structural characterization of well-aligned RuO2 nanorods on LiNbO3 (100) via MOCVD. Journal of Alloys and Compounds, 2009, 480, 100-103.	5. 5	0
56	Growth and characterization of the coexistence of vertically aligned and twinned V-shaped RuO2 nanorods on nanostructural TiO2 template. Journal of Alloys and Compounds, 2009, 485, 524-528.	5.5	12
57	Pt–Ru and Pt–Mo electrodeposited onto Ir–IrO2 nanorods and their catalytic activities in methanol and ethanol oxidation. Journal of Materials Chemistry, 2009, 19, 1601.	6.7	31
58	Synthesis and characterization of well-aligned anatase TiO2 nanocrystals on fused silica via metal–organic vapor deposition. CrystEngComm, 2009, 11, 2313.	2.6	18
59	X-ray diffraction and Raman scattering study of thermal-induced phase transformation in vertically aligned TiO2 nanocrystals grown on sapphire(100) via metal organic vapor deposition. Journal of Crystal Growth, 2008, 310, 3663-3667.	1.5	7
60	Thermally decomposed (110) surface of RuO2 single crystal. Solid State Communications, 2008, 146, 462-467.	1.9	3
61	Electrochemical performance of lanthanum calcium cobalt ferrite cathode interfaced to LAMOX electrolyte. Solid State Ionics, 2008, 179, 330-337.	2.7	7
62	Area-selectively sputtering the RuO2 nanorods array. Applied Surface Science, 2008, 254, 6915-6921.	6.1	7
63	Electrochemical Behavior of Gelâ€Derived Lanthanum Calcium Cobalt Ferrite Cathode in Contact with LAMOX Electrolyte. Journal of the American Ceramic Society, 2008, 91, 2217-2222.	3.8	3
64	Growth and characterization of well-aligned densely-packed rutile TiO ₂ nanocrystals on sapphire substrates via metal–organic chemical vapor deposition. Nanotechnology, 2008, 19, 075611.	2.6	67
65	Structures and Catalytic Properties of PtRu Electrocatalysts Prepared via the Reduced RuO2 Nanorods Array. Langmuir, 2008, 24, 2785-2791.	3.5	16
66	Growth and characterization of V-shaped IrO ₂ nanowedges via metal-organic vapor deposition. Nanotechnology, 2008, 19, 465607.	2.6	8
67	Raman scattering characterization of well-aligned RuO2nanocrystals grown on sapphire substrates. New Journal of Physics, 2007, 9, 130-130.	2.9	19
68	Well-Aligned <mml:math id="E1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>IrO</mml:mtext></mml:mrow><mml:mtext>2<td>mlantext></td><td></td></mml:mtext></mml:msub></mml:mrow></mml:math>	ml an text>	
69	Comparison of electronic structures of RuO2 and IrO2 nanorods investigated by x-ray absorption and scanning photoelectron microscopy. Applied Physics Letters, 2007, 90, 042108.	3.3	13
70	Growth and Characterization of Vertically Aligned Densely Packed TiO2 Nanocrystals on Sapphire (100) via Metal-Organic Chemical Vapor Deposition. ECS Transactions, 2007, 11, 19-25.	0.5	2
71	Synthesis of IrO2 nanocrystals on sapphire via metal-organic chemical vapor deposition. Journal of Alloys and Compounds, 2007, 442, 313-315.	5 . 5	5
72	Deposition and characterization of 1D RuO2 nanocrystals by reactive sputtering. Journal of Alloys and Compounds, 2007, 442, 310-312.	5.5	10

#	Article	IF	Citations
73	Ptâ°'Irâ°'IrO2NT Thin-Wall Electrocatalysts Derived from IrO2Nanotubes and Their Catalytic Activities in Methanol Oxidation. Chemistry of Materials, 2007, 19, 424-431.	6.7	60
74	Energetics and Rate Constants of Si $<$ sub $>$ 2 $<$ /sub $>$ H $<$ sub $>$ 6 $<$ /sub $>$ and Ge $<$ sub $>$ 2 $<$ /sub $>$ H $<$ sub $>$ 6 $<$ /sub $>$ Dissociative Adsorption on Dimers of SiGe(100)-2 \tilde{A} — 1. Journal of Physical Chemistry C, 2007, 111, 13466-13472.	3.1	8
75	Structures and Electrochemical Capacitive Properties of RuO2Vertical Nanorods Encased in Hydrous RuO2. Journal of Physical Chemistry C, 2007, 111, 9530-9537.	3.1	84
76	Raman scattering characterization of well-aligned RuO2 and IrO2 nanocrystals. Journal of Raman Spectroscopy, 2007, 38, 737-749.	2.5	112
77	Quartz crystal microbalance sensor based on nanostructured IrO2. Sensors and Actuators B: Chemical, 2007, 122, 95-100.	7.8	34
78	Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode. Materials Chemistry and Physics, 2007, 101, 297-302.	4.0	114
79	Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9. Solid State Ionics, 2007, 178, 367-374.	2.7	50
80	Effect of length, spacing and morphology of vertically aligned RuO2nanostructures on field-emission properties. Nanotechnology, 2006, 17, 3149-3153.	2.6	19
81	Selective growth of IrO2nanorods using metalorganic chemical vapor deposition. Journal of Materials Chemistry, 2006, 16, 780-786.	6.7	23
82	Growth and Characterization of Well-Aligned RuO2 Nanocrystals on Oxide Substrates via Reactive Sputtering. Crystal Growth and Design, 2006, 6, 2501-2506.	3.0	22
83	Raman scattering characterization of vertical aligned 1D IrO2 nanocrystals grown on single crystal oxide substrates. Solid State Communications, 2006, 137, 310-314.	1.9	14
84	DFT study on dissociative adsorption of SiH4 and GeH4 on SiGe(100)-2 \tilde{A} -1 surface. Surface Science, 2006, 600, 3194-3201.	1.9	9
85	Growth and characterization of vertically aligned IrO 2 one dimensional nanocrystals on LiNbO 3 (100) via reactive sputtering. Thin Solid Films, 2006, 503, 96-102.	1.8	11
86	Raman scattering characterization of well-aligned IrO2 nanocrystals grown on sapphire substrates via reactive sputtering. Journal of Raman Spectroscopy, 2006, 37, 1411-1415.	2.5	10
87	Growth and characterization of well aligned densely packed IrO2nanocrystals on sapphire via reactive sputtering. Journal of Physics Condensed Matter, 2006, 18, 1121-1136.	1.8	16
88	One-dimensional conductive IrO2nanocrystals. Nanotechnology, 2006, 17, R67-R87.	2.6	59
89	Fabrication and electric properties of PZN-based ceramics using modified columbite method. Journal of the European Ceramic Society, 2005, 25, 2197-2200.	5.7	10
90	Preparation and characterization of gold-coated silver triangular platelets in nanometer scale. Materials Chemistry and Physics, 2005, 90, 361-366.	4.0	13

#	Article	IF	Citations
91	Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9. Journal of the European Ceramic Society, 2005, 25, 481-487.	5.7	71
92	Study of Pathway of Hydrogen Migration and Desorption on SiGe(100) Surface UsingAb InitioCalculations. Japanese Journal of Applied Physics, 2005, 44, 7625-7633.	1.5	4
93	Field emission characteristics of ruthenium dioxide nanorods. Nanotechnology, 2005, 16, 1885-1891.	2.6	33
94	Morphological evolution of the self-assembled IrO2 one-dimensional nanocrystals. Nanotechnology, 2005, 16, 93-97.	2.6	15
95	Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates. Journal of Materials Chemistry, 2005, 15, 2122.	6.7	76
96	The growth and characterization of well aligned RuO2 nanorods on sapphire substrates. Journal of Physics Condensed Matter, 2004, 16, 8475-8484.	1.8	38
97	Preparation of ruthenium dioxide nanorods and their field emission characteristics. Applied Physics Letters, 2004, 85, 3860-3862.	3.3	34
98	Structure and properties of PZT thin films on strontium ruthenate and calcium ruthenate electrodes. Materials Chemistry and Physics, 2004, 85, 88-95.	4.0	9
99	Growth and characterization of vertically aligned self-assembled IrO2 nanotubes on oxide substrates. Journal of Crystal Growth, 2004, 271, 105-112.	1.5	52
100	A comparative study of microstructure of RuO2 nanorods via Raman scattering and field emission scanning electron microscopy. Solid State Communications, 2004, 131, 349-353.	1.9	22
101	Permeation properties of microporous membranes prepared via coating of evaporated polydimethylsilane. Journal of Membrane Science, 2004, 237, 163-165.	8.2	12
102	Influence of surface additives iodine and indium on the initial growth in copper chemical vapor deposition. Applied Surface Science, 2004, 236, 165-174.	6.1	4
103	Field emission from vertically aligned conductive IrO2 nanorods. Applied Physics Letters, 2004, 84, 1552-1554.	3.3	75
104	Growth of Well Aligned IrO2 Nanotubes on LiTaO3(012) Substrate. Chemistry of Materials, 2004, 16, 2457-2462.	6.7	33
105	Area-selective growth of ruthenium dioxide nanorods on LiNbO3(100) and Zn/Si substrates. Journal of Materials Chemistry, 2004, 14, 3503.	6.7	28
106	Growth and characterization of iridium dioxide nanorods. Journal of Alloys and Compounds, 2004, 383, 273-276.	5.5	25
107	Metalorganic chemical vapor deposition of SrRuO3 thin film and its characterization. Journal of Materials Science, 2003, 38, 2633-2638.	3.7	10
108	Microstructural defects in Ba(Mg1/3Ta2/3)O3 microwave dielectric materials. Materials Chemistry and Physics, 2003, 79, 218-221.	4.0	12

#	Article	IF	CITATIONS
109	Microstructural characteristics of (Pb1â^'xCax)TiO3 materials. Materials Chemistry and Physics, 2003, 79, 191-194.	4.0	1
110	Growth control and characterization of vertically aligned IrO2 nanorods. Journal of Materials Chemistry, 2003, 13, 2525.	6.7	79
111	Study of Tetraethyllead Oxidation Pathways Using Density Functional Theory. Japanese Journal of Applied Physics, 2003, 42, 7564-7569.	1.5	0
112	Synthesis and Properties of Lead Zirconate Titanate Thin Films Via Metalorganic Chemical Vapor Deposition. Journal of Materials Research, 2002, 17, 1536-1542.	2.6	12
113	Octahedral Tilting Domain Boundary in Calcium-Modified Lead Titanate Ceramics. Integrated Ferroelectrics, 2002, 48, 69-78.	0.7	1
114	Surface reaction probabilities of radicals correlated from film thickness contours in silane chemical vapor deposition. Thin Solid Films, 2002, 411, 177-184.	1.8	4
115	Synthesis and Permeation Properties of Siliconâ^'Carbon-Based Inorganic Membrane for Gas Separation. Industrial & Description of the Company	3.7	38
116	Si_Al_C gas separation membranes derived from polydimethylsilane and aluminum acetylacetonate. Journal of Membrane Science, 2001, 192, 209-216.	8.2	12
117	Abnormal growth of lead titanate thin film in chemical vapor deposition of Pb(C2H5)4/Ti(OPri)4/O2. Materials Chemistry and Physics, 2001, 70, 223-230.	4.0	5
118	Fatigue properties and microstructures of (Pb,Ca)TiO3ceramics. Ferroelectrics, 2001, 261, 199-204.	0.6	1
119	Ordered structure formation in the flux-grown Ba(Mg1/3Ta2/3)O3 single crystals. Journal of Materials Research, 2001, 16, 1593-1599.	2.6	4
120	Microstructure of Ba(Mg1/3Ta2/3)O3-BaSnO3 microwave dielectrics. Ceramics International, 2000, 26, 57-62.	4.8	28
121	Low pressure chemical vapor deposition of silicon carbide from dichlorosilane and acetylene. Materials Chemistry and Physics, 2000, 63, 196-201.	4.0	30
122	Ordered Structure and Dielectric Properties of Lanthanumâ€Substituted Ba(Mg _{1/3} Ta _{2/3})O ₃ . Journal of the American Ceramic Society, 2000, 83, 2074-2078.	3.8	21
123	A Hydrogenâ€Permselective Silicon Oxycarbide Membrane Derived from Polydimethylsilane. Journal of the American Ceramic Society, 1999, 82, 2796-2800.	3.8	38
124	Variation in the ordering of Ba(Zn1/3Ta2/3)O3with A-site substitutions. Ferroelectrics, 1998, 206, 293-305.	0.6	11
125	Silicon Carbide Membranes Modified by Chemical Vapor Deposition Using Species of Low Sticking Coefficients in a Silane/Acetylene Reaction System. Journal of the American Ceramic Society, 1998, 81, 159-165.	3.8	5
126	Effect of La/K A-site Substitutions on the Ordering of Ba(Zn1/3Ta2/3)O3. Journal of the American Ceramic Society, 1997, 80, 2885-2890.	3.8	20

#	Article	IF	Citations
127	Uniformity of deposited film thickness on a uneven surface by direct simulation Monte Carlo. Materials Chemistry and Physics, 1997, 48, 82-89.	4.0	5
128	Preparation and Analysis of a Silicon Carbide Composite Membrane. Journal of the American Ceramic Society, 1997, 80, 365-372.	3.8	49
129	Solvent debinding kinetics of alumina green bodies by powder injection molding. Ceramics International, 1995, 21, 257-264.	4.8	43
130	Raising pyrolysis yield of preceramic polymers of silicon carbonitride. Journal of Materials Science, 1995, 30, 4463-4468.	3.7	8
131	lon clustering and crystallization of sol-gel-derived erbium silicate glass. Journal of Materials Science Letters, 1994, 13, 615-617.	0.5	33
132	Rb/K ion exchange in BK1 glass to fabricate gradient-index rods. Materials Chemistry and Physics, 1994, 39, 63-67.	4.0	2
133	Leaching silicon-based wet gels to approach GRIN. Journal of Non-Crystalline Solids, 1994, 169, 160-168.	3.1	2
134	Green body reinforcement of latexes on alumina colloidal gels. Journal of Materials Science Letters, 1992, 11, 913-915.	0.5	0
135	Controlled Gelation and Sintering of Monolithic Gels Prepared from gamma-Alumina Fume Powder. Journal of the American Ceramic Society, 1991, 74, 830-836.	3.8	38
136	Pressure buildup and internal stresses during binder burnout: Numerical analysis. AICHE Journal, 1991, 37, 547-554.	3.6	70
137	Barium and strontium titanate films from hydroxide-alkoxide precursors. Journal of Materials Science Letters, 1991, 10, 1000-1002.	0.5	16
138	Calcination and sintering of Ba2Ti9O20 alkoxide-derived powder. Journal of Materials Science Letters, 1989, 8, 1291-1293.	0.5	7
139	A study on burden distribution of blast furnace with a bellâ€less top. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 1988, 11, 199-205.	1.1	2
140	Application of heat balance integral in melting with initial subfreezing. International Communications in Heat and Mass Transfer, 1986, 13, 265-280.	5.6	0
141	EFFECTIVE CONDUCTIVITIES OF RANDOM FIBER BEDSâ€. Chemical Engineering Communications, 1986, 40, 207-218.	2.6	62
142	Radiation across a spherical cavity having both specular and diffuse reflectance components. Chemical Engineering Science, 1985, 40, 170-173.	3.8	15
143	Specular reflection in radiant heat transport across a spherical void. Chemical Engineering Science, 1984, 39, 775-779.	3.8	8
144	Growth and characterization of vertically aligned 1D IrO/sub 2/ nanocrystals via reactive sputtering. , 0, , .		0

#	Article	IF	CITATIONS
145	Growth and Characterization of Well-Aligned RuO ₂ /R-TiO ₂ Heteronanostructures on Sapphire (100) Substrates by Reactive Magnetron Sputtering. Solid State Phenomena, 0, 170, 78-82.	0.3	O
146	Deposition and Characterization of Nanostructural IrO _x by RF Sputtering. Solid State Phenomena, 0, 194, 129-132.	0.3	3
147	Solid acrylonitrileâ€based copolymer electrolytes and their potential application in solid state battery. Journal of Applied Polymer Science, 0, , 52158.	2.6	3