List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/14694/publications.pdf Version: 2024-02-01

Δημέρ Είλινα

#	Article	IF	CITATIONS
1	Stability of within host HTLV-I/HIV-1 co-infection in the presence of macrophages. International Journal of Biomathematics, 2023, 16, .	1.5	4
2	Stability of HIV/HTLVâ€I coâ€infection model with delays. Mathematical Methods in the Applied Sciences, 2022, 45, 238-300.	1.2	3
3	Global analysis of within-host SARS-CoV-2/HIV coinfection model with latency. European Physical Journal Plus, 2022, 137, 174.	1.2	17
4	Stability of a secondary dengue viral infection model with multi-target cells. AEJ - Alexandria Engineering Journal, 2022, 61, 7075-7087.	3.4	4
5	Global stability of a delayed SARS-CoV-2 reactivation model with logistic growth, antibody immunity and general incidence rate. AEJ - Alexandria Engineering Journal, 2022, 61, 12475-12495.	3.4	1
6	Global Stability of a Humoral Immunity COVID-19 Model with Logistic Growth and Delays. Mathematics, 2022, 10, 1857.	1.1	17
7	Stability analysis of withinâ€host SARSâ€CoVâ€2/HIV coinfection model. Mathematical Methods in the Applied Sciences, 2022, 45, 11403-11422.	1.2	9
8	Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19, 8380-8410.	1.0	8
9	Stability dynamics of a delayed generalized Chikungunya virus infection model. Journal of Applied Mathematics and Computing, 2021, 65, 575-595.	1.2	7
10	Analysis of a within-host HIV/HTLV-I co-infection model with immunity. Virus Research, 2021, 295, 198204.	1.1	20
11	Global stability of HIV/HTLV co-infection model with CTL-mediated immunity. Discrete and Continuous Dynamical Systems - Series B, 2021, .	0.5	2
12	Mathematical modeling of HIV/HTLV co-infection with CTL-mediated immunity. AIMS Mathematics, 2021, 6, 1634-1676.	0.7	10
13	Modeling and stability analysis of HIV/HTLV-I co-infection. International Journal of Biomathematics, 2021, 14, 2150030.	1.5	3
14	Modeling and analysis of a within-host HIV/HTLV-I co-infection. Boletin De La Sociedad Matematica Mexicana, 2021, 27, 38.	0.2	5
15	Global Dynamics of Secondary DENV Infection with Diffusion. Journal of Mathematics, 2021, 2021, 1-17.	0.5	4
16	A Global Analysis of Delayed SARS-CoV-2/Cancer Model with Immune Response. Mathematics, 2021, 9, 1283.	1.1	7
17	Global Dynamics of HIV/HTLV-I Co-infection with Effective CTL-Mediated Immune Response. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44, 4003.	0.4	0
18	Stability of HIV/HTLV co-infection model with effective HIV-specific antibody immune response. Results in Physics, 2021, 27, 104448.	2.0	5

#	Article	IF	CITATIONS
19	Global dynamics of SARS-CoV-2/cancer model with immune responses. Applied Mathematics and Computation, 2021, 408, 126364.	1.4	19
20	Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18, 1077-1120.	1.0	0
21	STABILITY OF A DELAYED ADAPTIVE IMMUNITY HIV INFECTION MODEL WITH SILENT INFECTED CELLS AND CELLULAR INFECTION. Journal of Applied Analysis and Computation, 2021, 11, 964-1005.	0.2	0
22	Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3541.	0.6	1
23	HTLV/HIV Dual Infection: Modeling and Analysis. Mathematics, 2021, 9, 51.	1.1	7
24	Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18, 9430-9473.	1.0	1
25	Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response. Applied Mathematics and Computation, 2020, 367, 124758.	1.4	38
26	Impact of B-cell impairment on virus dynamics with time delay and two modes of transmission. Chaos, Solitons and Fractals, 2020, 130, 109455.	2.5	3
27	Global stability of discrete pathogen infection model with humoral immunity and cell-to-cell transmission. Chaos, Solitons and Fractals, 2020, 130, 109458.	2.5	9
28	Stability of discrete-time latent pathogen dynamics model with delay and cellular infection. Journal of Intelligent and Fuzzy Systems, 2020, 38, 2789-2799.	0.8	1
29	Stability of delayed CHIKV dynamics model with cell-to-cell transmission. Journal of Intelligent and Fuzzy Systems, 2020, 38, 2425-2433.	0.8	0
30	Stability of a general adaptive immunity virus dynamics model with multistages of infected cells and two routes of infection. Mathematical Methods in the Applied Sciences, 2020, 43, 1145-1175.	1.2	24
31	Impact of adaptive immune response and cellular infection on delayed virus dynamics with multi-stages of infected cells. International Journal of Biomathematics, 2020, 13, 2050003.	1.5	1
32	Global stability analysis of a general nonlinear scabies dynamics model. Chaos, Solitons and Fractals, 2020, 138, 110133.	2.5	0
33	Stability of a general CTL-mediated immunity HIV infection model with silent infected cell-to-cell spread. Advances in Difference Equations, 2020, 2020, .	3.5	21
34	Stability of a delay-distributed HIV infection model with silent infected cell-to-cell spread and CTL-mediated immunity. European Physical Journal Plus, 2020, 135, 1.	1.2	3
35	Global stability of an adaptive immunity HIV dynamics model with silent and active cell-to-cell transmissions. AIP Advances, 2020, 10, 085216.	0.6	1
36	Stability of a Discrete-Time Pathogen Infection Model with Adaptive Immune Response. Discrete Dynamics in Nature and Society, 2020, 2020, 1-26.	0.5	0

#	Article	IF	CITATIONS
37	Stability preserving NSFD scheme for a general virus dynamics model with antibody and cell-mediated responses. Chaos, Solitons and Fractals, 2020, 138, 109862.	2.5	7
38	Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response. Nonlinear Analysis: Real World Applications, 2020, 55, 103116.	0.9	37
39	Stability of a general discrete-time viral infection model with humoral immunity and cellular infection. AIP Advances, 2020, 10, 015244.	0.6	0
40	GLOBAL PROPERTIES OF HIV DYNAMICS MODELS INCLUDING IMPAIRMENT OF B-CELL FUNCTIONS. Journal of Biological Systems, 2020, 28, 1-25.	0.5	8
41	Stability of delayed discrete-time viral model with antibody and cell-mediated immune responses. AEJ - Alexandria Engineering Journal, 2020, 59, 1073-1091.	3.4	0
42	A reaction–diffusion model for oncolytic M1 virotherapy with distributed delays. European Physical Journal Plus, 2020, 135, 1.	1.2	4
43	Particle Methods Simulations by Kinetic Theory Models of Human Crowds Accounting for Stress Conditions. Symmetry, 2020, 12, 14.	1.1	9
44	Global Analysis of a Reaction-Diffusion Within-Host Malaria Infection Model with Adaptive Immune Response. Mathematics, 2020, 8, 563.	1.1	18
45	Global stability of delayâ€distributed viral infection model with two modes of viral transmission and Bâ€cell impairment. Mathematical Methods in the Applied Sciences, 2020, 43, 6677-6701.	1.2	25
46	Global stability of a delayed adaptive immunity viral infection with two routes of infection and multi-stages of infected cells. Communications in Nonlinear Science and Numerical Simulation, 2020, 86, 105259.	1.7	27
47	Global analysis of a reaction–diffusion blood-stage malaria model with immune response. International Journal of Biomathematics, 2020, 13, 2050029.	1.5	1
48	Stability of a discrete-time general delayed viral model with antibody and cell-mediated immune responses. Advances in Difference Equations, 2020, 2020, .	3.5	6
49	Stability of an adaptive immunity viral infection model with multi-stages of infected cells and two routes of infection. Mathematical Biosciences and Engineering, 2020, 17, 575-605.	1.0	1
50	Stability of a CTL-mediated immunity HIV infection models with silent infected cells and cellular infection. Journal of Mathematics and Computer Science, 2020, 22, 216-237.	0.5	0
51	Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17, 6401-6458.	1.0	6
52	Global stability of delayed virus infection model including multi-target cells and B-cell impairment. Journal of Mathematics and Computer Science, 2020, 23, 245-262.	0.5	0
53	Stability of a general reaction-diffusion HIV-1 dynamics model with humoral immunity. European Physical Journal Plus, 2019, 134, 1.	1.2	17
54	Global Properties of a General Latent Pathogen Dynamics Model with Delayed Pathogenic and Cellular Infections. Discrete Dynamics in Nature and Society, 2019, 2019, 1-18.	0.5	22

#	Article	IF	CITATIONS
55	A Critical Analysis of Behavioural Crowd Dynamics—From a Modelling Strategy to Kinetic Theory Methods. Symmetry, 2019, 11, 851.	1.1	12
56	Global stability of discrete virus dynamics models with humoural immunity and latency. Journal of Biological Dynamics, 2019, 13, 639-674.	0.8	5
57	Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions. Mathematics, 2019, 7, 837.	1.1	35
58	Stability analysis of a general discrete-time pathogen infection model with humoral immunity. Journal of Difference Equations and Applications, 2019, 25, 1149-1172.	0.7	28
59	Global properties of latent virus dynamics with B-cell impairment. AIP Advances, 2019, 9, .	0.6	1
60	Stability of a general HIV-1 reaction–diffusion model with multiple delays and immune response. Physica A: Statistical Mechanics and Its Applications, 2019, 536, 122593.	1.2	11
61	Effect of Time Delay in Controlling Crop Pest Using Farming Awareness. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	0.9	9
62	Global Properties of Latent Virus Dynamics Models with Immune Impairment and Two Routes of Infection. High-Throughput, 2019, 8, 16.	4.4	1
63	Stability of discrete-time delayed pathogen infection models with latently infected cells. AIP Advances, 2019, 9, 045015.	0.6	0
64	Stability of CHIKV infection models with CHIKV-monocyte and infected-monocyte saturated incidences. AIP Advances, 2019, 9, 025308.	0.6	6
65	Analysis of General Humoral Immunity HIV Dynamics Model with HAART and Distributed Delays. Mathematics, 2019, 7, 157.	1.1	48
66	Stability of discrete-time HIV dynamics models with three categories of infected CD4+ T-cells. Advances in Difference Equations, 2019, 2019, .	3.5	21
67	Global dynamics of a general diffusive HBV infection model with capsids and adaptive immune response. Advances in Difference Equations, 2019, 2019, .	3.5	6
68	Global dynamics of delayed CHIKV infection model with multitarget cells. Journal of Applied Mathematics and Computing, 2019, 60, 303-325.	1.2	9
69	A DPL model of photothermal interaction in a semiconductor material. Waves in Random and Complex Media, 2019, 29, 328-343.	1.6	99
70	Global properties of saturated chikungunya virus dynamics models with cellular infection and delays. Advances in Difference Equations, 2019, 2019, .	3.5	2
71	Global dynamics of humoral immunity Chikungunya virus with two routes of infection and Holling type-II. Journal of Mathematics and Computer Science, 2019, 19, 65-73.	0.5	6
72	Global dynamics of delayed HIV infection models including impairment of B-cell functions. Journal of Mathematics and Computer Science, 2019, 20, 161-188.	0.5	0

AHMED ELAIW

#	Article	IF	CITATIONS
73	Global properties of virus dynamics with B-cell impairment. Open Mathematics, 2019, 17, 1435-1449.	0.5	1
74	Dynamics of delayed pathogen infection models with pathogenic and cellular infections and immune impairment. AIP Advances, 2018, 8, .	0.6	19
75	Effect of cellular reservoirs and delays on the global dynamics of HIV. Advances in Difference Equations, 2018, 2018, .	3.5	44
76	Stability of latent pathogen infection model with adaptive immunity and delays. Journal of Integrative Neuroscience, 2018, 17, 547-576.	0.8	5
77	Dynamics and equilibria of living systems. Physics of Life Reviews, 2018, 24, 50-51.	1.5	0
78	Stability of latent pathogen infection model with CTL immune response and saturated cellular infection. AIP Advances, 2018, 8, .	0.6	2
79	Stability of delayed pathogen dynamics models with latency and two routes of infection. Advances in Difference Equations, 2018, 2018, .	3.5	31
80	Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment. Advances in Difference Equations, 2018, 2018, .	3.5	45
81	Stability of delayed pathogen dynamics model with cellular infection and CTL immune response. Applied Mathematical Sciences, 2018, 12, 1277-1295.	0.0	0
82	Global Stability of Within-Host Virus Dynamics Models with Multitarget Cells. Mathematics, 2018, 6, 118.	1.1	12
83	Mathematical Modeling in Virology by Differential Equations. International Journal of Differential Equations, 2018, 2018, 1-2.	0.3	2
84	Analysis of latent CHIKV dynamics models with general incidence rate and time delays. Journal of Biological Dynamics, 2018, 12, 700-730.	0.8	16
85	Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays. Mathematical Methods in the Applied Sciences, 2018, 41, 6645-6672.	1.2	32
86	Analysis of within-host CHIKV dynamics models with general incidence rate. International Journal of Biomathematics, 2018, 11, 1850062.	1.5	22
87	Effect of antibodies on pathogen dynamics with delays and two routes of infection. AIP Advances, 2018, 8, .	0.6	5
88	Stability of pathogen dynamics models with viral and cellular infections and immune impairment. Journal of Nonlinear Science and Applications, 2018, 11, 456-468.	0.4	3
89	Effect of Time Delay and Antibodies on HCV Dynamics with Cure Rate and Two Routes of Infection. Journal of Applied Mathematics and Physics, 2018, 06, 1120-1138.	0.2	8
90	Stability analysis of general humoral immunity HIV dynamics models with discrete delays and HAART. Journal of Mathematics and Computer Science, 2018, 18, 430-452.	0.5	1

#	Article	IF	CITATIONS
91	Global Properties of General Viral Infection Models with Humoral Immune Response. Differential Equations and Dynamical Systems, 2017, 25, 453-479.	0.5	0
92	Clobal stability of a delayed humoral immunity virus dynamics model with nonlinear incidence and infected cells removal rates. International Journal of Dynamics and Control, 2017, 5, 381-393.	1.5	2
93	Stability analysis of humoral immunity HIV infection models with RTI and discrete delays. International Journal of Dynamics and Control, 2017, 5, 811-831.	1.5	3
94	Stability of a general delayâ€distributed virus dynamics model with multiâ€staged infected progression and immune response. Mathematical Methods in the Applied Sciences, 2017, 40, 699-719.	1.2	56
95	Stability of general virus dynamics models with both cellular and viral infections and delays. Mathematical Methods in the Applied Sciences, 2017, 40, 5863-5880.	1.2	55
96	Stability of a general delayed virus dynamics model with humoral immunity and cellular infection. AIP Advances, 2017, 7, .	0.6	12
97	Stability of HIV-1 infection with saturated virus-target and infected-target incidences and CTL immune response. International Journal of Biomathematics, 2017, 10, 1750070.	1.5	32
98	Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics. Mathematical Models and Methods in Applied Sciences, 2017, 27, 617-640.	1.7	75
99	Nonlinear dynamical systems. Physics of Life Reviews, 2017, 22-23, 22-23.	1.5	1
100	Dynamical behaviors of a general humoral immunity viral infection model with distributed invasion and production. International Journal of Biomathematics, 2017, 10, 1750035.	1.5	14
101	Dynamics and control in an \$\$({varvec{n}}+{varvec{2}})\$\$ (n + 2) -neuron BAM network with multiple delays. Nonlinear Dynamics, 2017, 87, 313-336.	2.7	11
102	Stability of CTL immunity pathogen dynamics model with capsids and distributed delay. AIP Advances, 2017, 7, .	0.6	7
103	On Entropy Dynamics for Active "Living―Particles. Entropy, 2017, 19, 525.	1.1	1
104	Stability of general virus dynamics models with both cellular and viral infections. Journal of Nonlinear Science and Applications, 2017, 10, 1538-1560.	0.4	5
105	Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections. AIP Advances, 2016, 6, 085204.	0.6	22
106	GLOBAL STABILITY OF A GENERAL VIRUS DYNAMICS MODEL WITH MULTI-STAGED INFECTED PROGRESSION AND HUMORAL IMMUNITY. Journal of Biological Systems, 2016, 24, 535-560.	0.5	4
107	Applications of Laplacian spectra for n-prism networks. Neurocomputing, 2016, 198, 69-73.	3.5	42
108	From crowd modeling to safety problems. Physics of Life Reviews, 2016, 18, 33-34.	1.5	1

#	Article	IF	CITATIONS
109	Space dynamics and stochastic features of evolutionary game dynamics. Physics of Life Reviews, 2016, 19, 27-28.	1.5	2
110	Global dynamics of delayâ€distributed HIV infection models with differential drug efficacy in cocirculating target cells. Mathematical Methods in the Applied Sciences, 2016, 39, 4-31.	1.2	62
111	Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates. International Journal of Dynamics and Control, 2016, 4, 303-317.	1.5	3
112	On the complex interplay between learning and dynamics in life sciences. Physics of Life Reviews, 2016, 16, 142-143.	1.5	1
113	Stability of humoral immunity virus infection model with general incidence rate and distributed delays. Miskolc Mathematical Notes, 2016, 17, 209.	0.3	0
114	Stability of Antibody Immunity Virus Dynamics Model with Nonlinear Incidence and Distributed Invasion and Production Delays. Journal of Computational and Theoretical Nanoscience, 2016, 13, 851-855.	0.4	0
115	Global analysis of a cocirculating target cells HIV model with differential drug efficacy and nonlinear incidence rate. Miskolc Mathematical Notes, 2016, 17, 231.	0.3	1
116	Application of Model Predictive Control to Emission Constrained Dynamic Energy and Reserve Dispatch Problems. Journal of Computational and Theoretical Nanoscience, 2016, 13, 4906-4915.	0.4	0
117	Global Properties of a Humoral Immunity Human Immunodeficiency Virus Infection Model with Differential Drug Efficacy in Cocirculating Target Cells. Journal of Computational and Theoretical Nanoscience, 2016, 13, 4988-4997.	0.4	0
118	Global Stability of a Delay-Distributed Human Immunodeficiency Virus Infection Model with Cytotoxic T Lymphocytes Immune Response and Crowley-Martin Functional Response. Journal of Computational and Theoretical Nanoscience, 2015, 12, 3739-3749.	0.4	0
119	Global Properties of Viral Infection Model with General Incidence Rate Function and Two Distributed Delays. Journal of Computational and Theoretical Nanoscience, 2015, 12, 3566-3571.	0.4	0
120	Global Stability of Humoral Immunity HIV Infection Models with Chronically Infected Cells and Discrete Delays. Discrete Dynamics in Nature and Society, 2015, 2015, 1-25.	0.5	0
121	Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal. Nonlinear Analysis: Real World Applications, 2015, 26, 161-190.	0.9	102
122	Power-rate synchronization of coupled genetic oscillators with unbounded time-varying delay. Cognitive Neurodynamics, 2015, 9, 549-559.	2.3	7
123	Revisiting node-based SIR models in complex networks with degree correlations. Physica A: Statistical Mechanics and Its Applications, 2015, 437, 75-88.	1.2	36
124	Pinning synchronization of coupled inertial delayed neural networks. Cognitive Neurodynamics, 2015, 9, 341-350.	2.3	59
125	Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay. Neural Networks, 2015, 69, 135-143.	3.3	75
126	Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating target cells. Applied Mathematics and Computation, 2015, 265, 1067-1089.	1.4	40

#	Article	IF	CITATIONS
127	Mathematics toward systems biology and complexity. Physics of Life Reviews, 2015, 12, 85-90.	1.5	2
128	Clobal properties of nonlinear humoral immunity viral infection models. International Journal of Biomathematics, 2015, 08, 1550058.	1.5	34
129	GLOBAL ANALYSIS OF AN EXTENDED HIV DYNAMICS MODEL WITH GENERAL INCIDENCE RATE. Journal of Biological Systems, 2015, 23, 401-421.	0.5	0
130	Global stability analysis of humoral immunity virus dynamics model including latently infected cells. Journal of Biological Dynamics, 2015, 9, 215-228.	0.8	17
131	On the interplay between mathematics and biology. Physics of Life Reviews, 2015, 12, 44-64.	1.5	43
132	Global stability of an epidemic model with carrier state in heterogeneous networks. IMA Journal of Applied Mathematics, 2015, 80, 1025-1048.	0.8	36
133	Global Properties for HIV Dynamics Models with Differential Drug Efficacy in Cocirculating Target Cells. Journal of Computational and Theoretical Nanoscience, 2015, 12, 3506-3515.	0.4	0
134	Stability of Virus Infection Models with Antibodies and Chronically Infected Cells. Abstract and Applied Analysis, 2014, 2014, 1-12.	0.3	17
135	Coupled Network Systems and Their Collective Behavior. Abstract and Applied Analysis, 2014, 2014, 1-1.	0.3	1
136	Delay-Dependent Stability Criterion of Caputo Fractional Neural Networks with Distributed Delay. Discrete Dynamics in Nature and Society, 2014, 2014, 1-6.	0.5	34
137	Synchronization of the Coupled Distributed Parameter System with Time Delay via Proportional-Spatial Derivative Control. Discrete Dynamics in Nature and Society, 2014, 2014, 1-7.	0.5	5
138	Computational Neuroscience. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-2.	0.7	0
139	Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays. International Journal of Biomathematics, 2014, 07, 1450055.	1.5	26
140	A Dual-loop Model Predictive Voltage Control/Sliding-mode Current Control for Voltage Source Inverter Operation in Smart Microgrids. Electric Power Components and Systems, 2014, 42, 348-360.	1.0	18
141	A Model Predictive Control Approach to Combined Heat and Power Dynamic Economic Dispatch Problem. Arabian Journal for Science and Engineering, 2014, 39, 7117-7125.	1.1	7
142	GLOBAL ANALYSIS FOR A DELAY-DISTRIBUTED VIRAL INFECTION MODEL WITH ANTIBODIES AND GENERAL NONLINEAR INCIDENCE RATE. Journal of the Korean Society for Industrial and Applied Mathematics, 2014, 18, 317-335.	0.0	10
143	Global properties of a class of HIV infection models with Beddington–DeAngelis functional response. Mathematical Methods in the Applied Sciences, 2013, 36, 383-394.	1.2	102
144	Hybrid DE-SQP and hybrid PSO-SQP methods for solving dynamic economic emission dispatch problem with valve-point effects. Electric Power Systems Research, 2013, 103, 192-200.	2.1	90

#	Article	IF	CITATIONS
145	Global Dynamics of Virus Infection Model with Antibody Immune Response and Distributed Delays. Discrete Dynamics in Nature and Society, 2013, 2013, 1-9.	0.5	7
146	Minimization of Fuel Costs and Gaseous Emissions of Electric Power Generation by Model Predictive Control. Mathematical Problems in Engineering, 2013, 2013, 1-15.	0.6	11
147	Hepatitis B Virus Dynamics: Modeling, Analysis, and Optimal Treatment Scheduling. Discrete Dynamics in Nature and Society, 2013, 2013, 1-9.	0.5	13
148	Global Dynamics of HIV Infection of CD4+T Cells and Macrophages. Discrete Dynamics in Nature and Society, 2013, 2013, 1-8.	0.5	8
149	The Kirchhoff Index of Hypercubes and Related Complex Networks. Discrete Dynamics in Nature and Society, 2013, 2013, 1-7.	0.5	15
150	Combined Heat and Power Dynamic Economic Dispatch with Emission Limitations Using Hybrid DE-SQP Method. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.3	16
151	Hybrid DE-SQP Method for Solving Combined Heat and Power Dynamic Economic Dispatch Problem. Mathematical Problems in Engineering, 2013, 2013, 1-7.	0.6	9
152	Global Stability of HIV Infection of CD4 ⁺ T Cells and Macrophages with CTL Immune Response and Distributed Delays. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-11.	0.7	0
153	Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.3	41
154	Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium. Mathematical Problems in Engineering, 2012, 2012, 1-14.	0.6	3
155	Dynamic Economic Dispatch Using Hybrid DE-SQP for Generating Units with Valve-Point Effects. Mathematical Problems in Engineering, 2012, 2012, 1-10.	0.6	14
156	Global Dynamics of an HIV Infection Model with Two Classes of Target Cells and Distributed Delays. Discrete Dynamics in Nature and Society, 2012, 2012, 1-13.	0.5	16
157	Stability and Feedback Stabilization of HIV Infection Model with Two Classes of Target Cells. Discrete Dynamics in Nature and Society, 2012, 2012, 1-20.	0.5	5
158	Solving dynamic economic emission dispatch problem with valve-point effects using hybrid DE-SQP. , 2012, , .		8
159	Discussion of "Hybrid SOA-SQP algorithm for dynamic economic dispatch with valve-point effects―by S. Sivasubramani, K.S. Swarup [Energy 35 (2010) 5031–5036]. Energy, 2012, 46, 694-696.	4.5	1
160	Global properties of a class of virus infection models with multitarget cells. Nonlinear Dynamics, 2012, 69, 423-435.	2.7	86
161	Global properties of a delayed HIV infection model with CTL immune response. Applied Mathematics and Computation, 2012, 218, 9405-9414.	1.4	54
162	Application of model predictive control to optimal dynamic dispatch of generation with emission limitations. Electric Power Systems Research, 2012, 84, 31-44.	2.1	52

#	Article	IF	CITATIONS
163	Effect of variable viscosity on vortex instability of non-Darcy free convection boundary layer flow adjacent to a non-isothermal horizontal surface in a porous medium. Boundary Value Problems, 2012, 2012, .	0.3	2
164	GLOBAL STABILITY OF HIV INFECTION MODELS WITH INTRACELLULAR DELAYS. Journal of the Korean Mathematical Society, 2012, 49, 779-794.	0.4	88
165	An application of model predictive control to the dynamic economic dispatch of power generation. Control Engineering Practice, 2011, 19, 638-648.	3.2	92
166	Effect of Variable Viscosity on Vortex Instability of Mixed Convection Boundary Layer Flow Adjacent to a Non-isothermal Horizontal Surface in a Porous Medium. Arabian Journal for Science and Engineering, 2011, 36, 1517-1528.	1.1	4
167	Global Properties of Virus Dynamics Models with Multitarget Cells and Discrete-Time Delays. Discrete Dynamics in Nature and Society, 2011, 2011, 1-19.	0.5	10
168	Optimal dynamic economic dispatch of generation: A review. Electric Power Systems Research, 2010, 80, 975-986.	2.1	282
169	Global properties of a class of HIV models. Nonlinear Analysis: Real World Applications, 2010, 11, 2253-2263.	0.9	158
170	Variable Permeability Effect on Vortex Instability of Non-Darcian Mixed Convection Flow Over a Horizontal Permeable Surface Embedded in a Saturated Porous Medium. International Journal of Fluid Mechanics Research, 2010, 37, 15-30.	0.4	1
171	HIV dynamics: Analysis and robust multirate MPC-based treatment schedules. Journal of Mathematical Analysis and Applications, 2009, 359, 285-301.	0.5	38
172	Variable permeability and inertia effect on vortex instability of natural convection flow over horizontal permeable plates in porous media. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2190-2201.	1.7	3
173	A Model Predictive Control approach to dynamic economic dispatch problem. , 2009, , .		30
174	Variable Permeability Effect on Vortex Instability of Buoyancy-Induced Inclined Boundary Layer Flow in a Saturated Porous Medium. International Journal of Fluid Mechanics Research, 2009, 36, 133-144.	0.4	0
175	Vortex instability of mixed convection boundary layer flow adjacent to a nonâ€isothermal inclined surface in a porous medium with variable permeability. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2008, 88, 121-128.	0.9	5
176	Effect of the chemical reaction and radiation absorption on the unsteady MHD free convection flow past a semi infinite vertical permeable moving plate with heat source and suction. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 1056-1066.	1.7	175
177	STABILIZING OUTPUT FEEDBACK RECEDING HORIZON CONTROL OF SAMPLED-DATA NONLINEAR SYSTEMS VIA THEIR APPROXIMATE DISCRETE-TIME MODELS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 615-620.	0.4	0
178	Multirate sampling and input-to-state stable receding horizon control for nonlinear systems. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 1637-1648.	0.6	12
179	The influence of variable permeability on vortex instability of a horizontal combined free and mixed convection flow in a saturated porous medium. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2007, 87, 528-536.	0.9	6
180	Variable permeability effect on buoyancy-induced inclined boundary layer flow in a saturated porous medium with variable wall temperature. Heat and Mass Transfer, 2007, 43, 1241-1247.	1.2	5

#	Article	IF	CITATIONS
181	Conditions for MPC Based Stabilization of Sampled-Data Nonlinear Systems Via Discrete-Time Approximations. , 2007, , 35-48.		10
182	Vortex Instability of Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium with Variable Permeability. Journal of Porous Media, 2007, 11, 305-321.	1.0	5
183	INFLUENCE OF VARIABLE PERMEABILITY ON VORTEX INSTABILITY OF A HORIZONTAL COMBINED FREE AND MIXED CONVECTION FLOW IN A SATURATED POROUS MEDIUM. , 2007, , .		0
184	MULTIRATE SAMPLING AND DELAYS IN RECEDING HORIZON STABILIZATION OF NONLINEAR SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 395-400.	0.4	3
185	Stabilization of HIV/AIDS model by receding horizon control. Journal of Applied Mathematics and Computing, 2005, 18, 95-112.	1.2	4
186	Variable permeability effect on vortex instability of a horizontal natural convection flow in a saturated porous medium with variable wall temperature. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2004, 84, 39-47.	0.9	10
187	The onset of longitudinal vortices in mixed convection flow over an inclined surface in a porous medium with variable permeability. Applied Mathematics and Computation, 2004, 154, 313-333.	1.4	9
188	Stabilization of sampled-data nonlinear systems by receding horizon control via discrete-time approximations. Automatica, 2004, 40, 2017-2028.	3.0	23
189	Stabilization of sampled-data nonlinear systems by receding horizon control via discrete-time approximationsâ~†. Automatica, 2004, 40, 2017-2028.	3.0	53
190	Variable permeability effect on vortex instability of mixed convection flow in a semi-infinite porous medium bounded by a horizontal surface. Applied Mathematics and Computation, 2003, 146, 829-847.	1.4	16
191	Global stability of a within-host SARS-CoV-2/cancer model with immunity and diffusion. International Journal of Biomathematics, 0, , 2150093.	1.5	7