List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1469225/publications.pdf Version: 2024-02-01

DAILI FIDEL

#	Article	IF	CITATIONS
1	<i>Candida glabrata</i> : Review of Epidemiology, Pathogenesis, and Clinical Disease with Comparison to <i>C. albicans</i> . Clinical Microbiology Reviews, 1999, 12, 80-96.	5.7	819
2	Requirement of Interleukinâ€17A for Systemic Anti–Candida albicansHost Defense in Mice. Journal of Infectious Diseases, 2004, 190, 624-631.	1.9	767
3	Adhesive and Mammalian Transglutaminase Substrate Properties of Candida albicans Hwp1. Science, 1999, 283, 1535-1538.	6.0	555
4	The diagnostic and prognostic value of amniotic fluid white blood cell count, glucose, interleukin-6, and Gram stain in patients with preterm labor and intact membranes. American Journal of Obstetrics and Gynecology, 1993, 169, 805-816.	0.7	370
5	An Intravaginal Live Candida Challenge in Humans Leads to New Hypotheses for the Immunopathogenesis of Vulvovaginal Candidiasis. Infection and Immunity, 2004, 72, 2939-2946.	1.0	229
6	Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. American Journal of Obstetrics and Gynecology, 1994, 170, 1467-1475.	0.7	197
7	Effects of Reproductive Hormones on Experimental Vaginal Candidiasis. Infection and Immunity, 2000, 68, 651-657.	1.0	169
8	Cytokine and Chemokine Production by Human Oral and Vaginal Epithelial Cells in Response to Candida albicans. Infection and Immunity, 2002, 70, 577-583.	1.0	161
9	Fungal Morphogenetic Pathways Are Required for the Hallmark Inflammatory Response during Candida albicans Vaginitis. Infection and Immunity, 2014, 82, 532-543.	1.0	147
10	Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework. Infection and Immunity, 2016, 84, 2724-2739.	1.0	144
11	Animal models of mucosal Candida infection. FEMS Microbiology Letters, 2008, 283, 129-139.	0.7	137
12	Current patient perspectives of vulvovaginal candidiasis: incidence, symptoms, management and post-treatment outcomes. BMC Women's Health, 2019, 19, 48.	0.8	133
13	History and Update on Host Defense Against Vaginal Candidiasis. American Journal of Reproductive Immunology, 2007, 57, 2-12.	1.2	128
14	Transcriptomic Analysis of Vulvovaginal Candidiasis Identifies a Role for the NLRP3 Inflammasome. MBio, 2015, 6, .	1.8	114
15	<i>Candida</i> -Host Interactions in HIV Disease: Relationships in Oropharyngeal Candidiasis. Advances in Dental Research, 2006, 19, 80-84.	3.6	106
16	Candida Vaginitis: When Opportunism Knocks, the Host Responds. PLoS Pathogens, 2014, 10, e1003965.	2.1	104
17	Epithelial Cell-Derived S100 Calcium-Binding Proteins as Key Mediators in the Hallmark Acute Neutrophil Response during <i>Candida</i> Vaginitis. Infection and Immunity, 2010, 78, 5126-5137.	1.0	103
18	The role of cell-mediated immunity in candidiasis. Trends in Microbiology, 1994, 2, 202-206.	3.5	102

#	Article	IF	CITATIONS
19	Chemical screening identifies filastatin, a small molecule inhibitor of <i>Candida albicans</i> adhesion, morphogenesis, and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13594-13599.	3.3	95
20	<i>Candida</i> -Host Interactions in HIV Disease. Advances in Dental Research, 2011, 23, 45-49.	3.6	93
21	Could an Unrelated Live Attenuated Vaccine Serve as a Preventive Measure To Dampen Septic Inflammation Associated with COVID-19 Infection?. MBio, 2020, 11, .	1.8	87
22	The Acute Neutrophil Response Mediated by S100 Alarmins during Vaginal Candida Infections Is Independent of the Th17-Pathway. PLoS ONE, 2012, 7, e46311.	1.1	83
23	Distinct Protective Host Defenses against oral and vaginal Candidiasis. Medical Mycology, 2002, 40, 359-375.	0.3	82
24	Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins. Cytokine, 2012, 58, 118-128.	1.4	82
25	Analysis of Vaginal Cell Populations during Experimental Vaginal Candidiasis. Infection and Immunity, 1999, 67, 3135-3140.	1.0	82
26	Comparison between Candida albicans Agglutinin-Like Sequence Gene Expression Patterns in Human Clinical Specimens and Models of Vaginal Candidiasis. Infection and Immunity, 2005, 73, 1656-1663.	1.0	76
27	Distinct Protective Host Defenses against oral and vaginal Candidiasis. Medical Mycology, 2002, 40, 359-375.	0.3	74
28	History and new insights into host defense against vaginal candidiasis. Trends in Microbiology, 2004, 12, 220-227.	3.5	72
29	Vaginal and Oral Epithelial Cell Anti- Candida Activity. Infection and Immunity, 2002, 70, 7081-7088.	1.0	71
30	Immunity in vaginal candidiasis. Current Opinion in Infectious Diseases, 2005, 18, 107-111.	1.3	69
31	Analysis of Measles-Mumps-Rubella (MMR) Titers of Recovered COVID-19 Patients. MBio, 2020, 11, .	1.8	66
32	Novel Mechanism behind the Immunopathogenesis of Vulvovaginal Candidiasis: "Neutrophil Anergy― Infection and Immunity, 2018, 86, .	1.0	65
33	Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Molecular Microbiology, 2003, 48, 1275-1288.	1.2	63
34	Vaginal Lactobacilli in Adolescents. Sexually Transmitted Diseases, 2004, 31, 393-400.	0.8	63
35	Candida albicans Augments Staphylococcus aureus Virulence by Engaging the Staphylococcal <i>agr</i> Quorum Sensing System. MBio, 2019, 10, .	1.8	63
36	Development of a Contemporary Animal Model of Candida albicans-Associated Denture Stomatitis Using a Novel Intraoral Denture System. Infection and Immunity, 2012, 80, 1736-1743.	1.0	62

#	Article	IF	CITATIONS
37	Local Production of Chemokines during Experimental Vaginal Candidiasis. Infection and Immunity, 1999, 67, 5820-5826.	1.0	60
38	Protocols for Vaginal Inoculation and Sample Collection in the Experimental Mouse Model of Candida vaginitis. Journal of Visualized Experiments, 2011, , .	0.2	58
39	Vulvovaginal Candidiasis as a Chronic Disease. Journal of Lower Genital Tract Disease, 2014, 18, 31-38.	0.9	54
40	Morphogenesis Is Not Required for Candida albicans-Staphylococcus aureus Intra-Abdominal Infection-Mediated Dissemination and Lethal Sepsis. Infection and Immunity, 2014, 82, 3426-3435.	1.0	54
41	Resistance of T-Cell Receptor δ-Chain-Deficient Mice to Experimental Candida albicans Vaginitis. Infection and Immunity, 2001, 69, 7162-7164.	1.0	51
42	Vaginal Epithelial Cell-Derived S100 Alarmins Induced by Candida albicans via Pattern Recognition Receptor Interactions Are Sufficient but Not Necessary for the Acute Neutrophil Response during Experimental Vaginal Candidiasis. Infection and Immunity, 2014, 82, 783-792.	1.0	50
43	Morphology-Independent Virulence of Candida Species during Polymicrobial Intra-abdominal Infections with Staphylococcus aureus. Infection and Immunity, 2016, 84, 90-98.	1.0	50
44	Vaginal Heparan Sulfate Linked to Neutrophil Dysfunction in the Acute Inflammatory Response Associated with Experimental Vulvovaginal Candidiasis. MBio, 2017, 8, .	1.8	50
45	Potential Role for a Carbohydrate Moiety in Anti- Candida Activity of Human Oral Epithelial Cells. Infection and Immunity, 2001, 69, 7091-7099.	1.0	48
46	Candida -Specific Antibodies during Experimental Vaginal Candidiasis in Mice. Infection and Immunity, 2002, 70, 5790-5799.	1.0	47
47	Distinct protective host defenses against oral and vaginal candidiasis. Medical Mycology, 2002, 40, 359-75.	0.3	47
48	Role for Dendritic Cells in Immunoregulation during Experimental Vaginal Candidiasis. Infection and Immunity, 2006, 74, 3213-3221.	1.0	44
49	Vaginal Epithelial Cell Anti-Candida albicans Activity Is Associated with Protection against Symptomatic Vaginal Candidiasis. Infection and Immunity, 2005, 73, 7765-7767.	1.0	43
50	Immunohistochemical Evaluation of T Cells in Oral Lesions from Human Immunodeficiency Virus-Positive Persons with Oropharyngeal Candidiasis. Infection and Immunity, 2003, 71, 956-963.	1.0	41
51	Iron Restriction to Clinical Isolates of Candida albicans by the Novel Chelator DIBI Inhibits Growth and Increases Sensitivity to Azoles <i>In Vitro</i> and <i>In Vivo</i> in a Murine Model of Experimental Vaginitis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	41
52	Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobicCandida albicansserotype A cells. FEMS Microbiology Letters, 2005, 244, 373-377.	0.7	40
53	Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis. Infection and Immunity, 2001, 69, 5072-5079.	1.0	38
54	Th1/Th2 cytokine profiles in saliva of HIV-positive smokers with oropharyngeal candidiasis. Oral Microbiology and Immunology, 2002, 17, 38-43.	2.8	38

#	Article	IF	CITATIONS
55	Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections. MBio, 2018, 9, .	1.8	33
56	Prospects for Development of a Vaccine to Prevent and Control Vaginal Candidiasis. Current Infectious Disease Reports, 2011, 13, 102-107.	1.3	30
57	A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response. PLoS ONE, 2016, 11, e0147969.	1.1	30
58	Characterization of IL-22 and antimicrobial peptide production in mice protected against pulmonary Cryptococcus neoformans infection. Microbiology (United Kingdom), 2014, 160, 1440-1452.	0.7	29
59	Tissueâ€Associated Cytokine Expression in HIVâ€Positive Persons with Oropharyngeal Candidiasis. Journal of Infectious Diseases, 2004, 190, 605-612.	1.9	27
60	Candida/Staphylococcal Polymicrobial Intra-Abdominal Infection: Pathogenesis and Perspectives for a Novel Form of Trained Innate Immunity. Journal of Fungi (Basel, Switzerland), 2019, 5, 37.	1.5	27
61	THE PROTECTIVE IMMUNE RESPONSE AGAINST VAGINAL CANDIDIASIS: LESSONS LEARNED FROM CLINICAL STUDIES AND ANIMAL MODELS. International Reviews of Immunology, 2002, 21, 515-548.	1.5	25
62	Characterization of CD8 + T Cells and Microenvironment in Oral Lesions of Human Immunodeficiency Virus-Infected Persons with Oropharyngeal Candidiasis. Infection and Immunity, 2005, 73, 3659-3667.	1.0	24
63	Protection of the oral mucosa by salivary histatin-5 against Candida albicans in an ex vivo murine model of oral infection. FEMS Yeast Research, 2010, 10, no-no.	1.1	23
64	<i>ERG2</i> and <i>ERG24</i> Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis. Eukaryotic Cell, 2015, 14, 1006-1016.	3.4	22
65	Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis. PLoS ONE, 2016, 11, e0159692.	1.1	22
66	Immunotherapeutic approaches to enhance protective immunity againstCandidavaginitis. Medical Mycology, 2005, 43, 589-601.	0.3	21
67	Significant effect of HIV/HAART on oral microbiota using multivariate analysis. Scientific Reports, 2019, 9, 19946.	1.6	21
68	Multiple experimental designs to evaluate the role of T-cell-mediated immunity against experimental vaginalCandida albicansinfection. Medical Mycology, 2003, 41, 401-409.	0.3	19
69	Spectrum of Trained Innate Immunity Induced by Low-Virulence Candida Species against Lethal Polymicrobial Intra-abdominal Infection. Infection and Immunity, 2019, 87, .	1.0	17
70	Periodontal Disease in HIV-Positive Individuals: Association of Periodontal Indices with Stages of HIV Disease. Journal of Periodontology, 2003, 74, 1336-1341.	1.7	15
71	Characterization of the Immune Status of CD8 + T Cells in Oral Lesions of Human Immunodeficiency Virus-Infected Persons with Oropharyngeal Candidiasis. Vaccine Journal, 2006, 13, 678-683.	3.2	15
72	Candidacidal activity of synthetic peptides based on the antimicrobial domain of the neutrophil-derived protein, CAP37. Medical Mycology, 2010, 48, 263-272.	0.3	15

#	Article	IF	CITATIONS
73	Effect of HIV/HAART and Other Clinical Variables on the Oral Mycobiome Using Multivariate Analyses. MBio, 2021, 12, .	1.8	15
74	Analysis of the CD4 Protein on Human Vaginal T Lymphocytes. American Journal of Reproductive Immunology, 2001, 45, 200-204.	1.2	13
75	Synthesis, Antifungal Activity, and Biocompatibility of Novel 1,4-Diazabicyclo[2.2.2]Octane (DABCO) Compounds and DABCO-Containing Denture Base Resins. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	13
76	Immune regulation and its role in the pathogenesis of Candida vaginitis. Current Infectious Disease Reports, 2003, 5, 488-493.	1.3	12
77	Identification of Specific Components of the Eicosanoid Biosynthetic and Signaling Pathway Involved in Pathological Inflammation during Intra-abdominal Infection with Candida albicans and Staphylococcus aureus. Infection and Immunity, 2018, 86, .	1.0	11
78	Trained Innate Immunity Induced by Vaccination with Low-Virulence <i>Candida</i> Species Mediates Protection against Several Forms of Fungal Sepsis via Ly6G ⁺ Gr-1 ⁺ Leukocytes. MBio, 2021, 12, e0254821.	1.8	11
79	Prostaglandin E 2 Receptor Antagonist with Antimicrobial Activity against Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	8
80	Dental Rounds: An Evolving Process of Curriculum Integration at the LSU School of Dentistry. Journal of Dental Education, 2014, 78, 796-802.	0.7	7
81	Applying the Host-Microbe Damage Response Framework to Candida Pathogenesis: Current and Prospective Strategies to Reduce Damage. Journal of Fungi (Basel, Switzerland), 2020, 6, 35.	1.5	7
82	Student and faculty perspectives of a facultyâ€student mentoring programme in a dental school. European Journal of Dental Education, 2019, 23, 184-189.	1.0	6
83	EngineeringCandida albicansto secrete a host immunomodulatory factor. FEMS Microbiology Letters, 2013, 346, 131-139.	0.7	5
84	Questions remain regarding the presence of fungal species biofilm in women with vulvovaginal candidiasis. American Journal of Obstetrics and Gynecology, 2019, 221, 169.	0.7	5
85	The Neutral Vaginal pH in Mice That Is Typical of Most Mammalian Species Should Not Deter Research Using Experimental Murine Models of <i>Candida</i> Vaginitis. Infection and Immunity, 2021, 89, .	1.0	5
86	A Contemporary Warming/Restraining Device for Efficient Tail Vein Injections in a Murine Fungal Sepsis Model. Journal of Visualized Experiments, 2020, , .	0.2	5
87	Efficacy of Candida dubliniensis and Fungal β-Glucans in Inducing Trained Innate Immune Protection Against Inducers of Sepsis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
88	Interplay between oral immunity in HIV and the microbiome. Oral Diseases, 2020, 26, 59-68.	1.5	4
89	Mucosal Immunity to <i>Candida albicans</i> ., 0, , 137-154.		4
90	Leukotrienes Are Dispensable for Vaginal Neutrophil Recruitment as Part of the Immunopathological Response During Experimental Vulvovaginal Candidiasis. Frontiers in Microbiology, 2021, 12, 739385.	1.5	3

PAUL L FIDEL

#	Article	IF	CITATIONS
91	Innate and Adaptive Cell-Mediated Immunity against Vaginal Candidiasis. , 2005, , 323-344.		2
92	Hurricane Katrina and the LSU Dental School(s): A Remarkable Encounter of Survival. Journal of Dental Research, 2007, 86, 198-201.	2.5	2
93	Immunity to Sexually Transmitted Infections. , 2015, , 2183-2214.		2
94	Reply to Dr. Reichman's Comments on "Vulvovaginal Candidiasis as a Chronic Disease. Journal of Lower Genital Tract Disease, 2015, 19, e24-e26.	0.9	1
95	Site-Specific Mucosal Immunity to Fungi: Lessons Learned from Candida albicans Applied to Other Fungi. , 0, , 505-526.		1
96	Dental rounds: an evolving process of curriculum integration at the LSU School of Dentistry. Journal of Dental Education, 2014, 78, 796-802.	0.7	1
97	Reply to "Chronic Vaginal Candidiasis Is Achievable in Outbred CD-1 Mice†MBio, 2017, 8, .	1.8	0
98	Reply to Özdemir, "Measles-Mumps-Rubella Vaccine and COVID-19 Relationship― MBio, 2020, 11, .	1.8	0
99	Caution regarding interpretations of intrauterine أَعْالَ T cells in protection against experimental vaginal candidiasis. Mucosal Immunology, 2021, 14, 774-775.	2.7	0
100	Divergent Mechanisms of Candidal Immunity at Different Anatomical Sites. , 2004, , 259-277.		0