Véronique Nardello-Rataj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1468930/publications.pdf

Version: 2024-02-01

86 papers

2,295 citations

270111 25 h-index 263392 45 g-index

88 all docs

88 docs citations

88 times ranked 3232 citing authors

#	Article	IF	Citations
1	Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
2	Multiphase Microreactors Based on Liquid–Liquid and Gas–Liquid Dispersions Stabilized by Colloidal Catalytic Particles. Angewandte Chemie, 2022, 134, .	1.6	4
3	COSMOâ€RS as an effective tool for predicting the physicochemical properties of fragrance raw materials. Flavour and Fragrance Journal, 2022, 37, 106-120.	1.2	8
4	Improved Hydrotropic Extraction of Carnosic Acid from Rosemary and Sage with Short-Chain Monoalkyl Glycerol Ethers. ACS Sustainable Chemistry and Engineering, 2022, 10, 3673-3681.	3.2	3
5	Bio-based alternatives to volatile silicones: Relationships between chemical structure, physicochemical properties and functional performances. Advances in Colloid and Interface Science, 2022, 304, 102679.	7.0	8
6	Cation Effect on the Binary and Ternary Phase Behaviors of Doubleâ€Tailed Methanesulfonate Amphiphiles. Journal of Surfactants and Detergents, 2021, 24, 401-410.	1.0	1
7	Amyl Xyloside, a Selective Sugar-Based Hydrotrope for the Aqueous Extraction of Carnosic Acid from Rosemary. ACS Sustainable Chemistry and Engineering, 2021, 9, 4801-4811.	3.2	7
8	Highly Active, Entirely Biobased Antimicrobial Pickering Emulsions. ChemMedChem, 2021, 16, 2223-2230.	1.6	8
9	Temperature-responsive Pickering emulsions stabilized by poly(ethylene glycol)-functionalized silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127641.	2.3	6
10	TiO2 nanoparticle dispersions in water and nonaqueous solvents studied by gravitational sedimentation analysis: Complementarity of Hansen Parameters and DLVO interpretations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127333.	2.3	17
11	Cross-linked poly(4â€vinylpyridine) particles for pH- and ionic strength-responsive "on–off―Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127705.	2.3	4
12	Hydrotropic Cloud Point Extraction of Lipids from Microalgae: A New Pathway for Biofuels Production. Energy & Dels, 2021, 35, 20151-20159.	2.5	3
13	Design and Properties of a Novel Family of Nonionic Biobased Furanic Hydroxyester and Amide Surfactants. ACS Sustainable Chemistry and Engineering, 2021, 9, 16977-16988.	3. 2	6
14	Use of the normalized hydrophilic-lipophilic-deviation (HLDN) equation for determining the equivalent alkane carbon number (EACN) of oils and the preferred alkane carbon number (PACN) of nonionic surfactants by the fish-tail method (FTM). Advances in Colloid and Interface Science, 2020, 276, 102099.	7.0	42
15	In vitro study of versatile drug formulations based on α-cyclodextrin and polyethylene glycol using colloidal tectonics. Journal of Drug Delivery Science and Technology, 2020, 59, 101913.	1.4	5
16	Hydrotropic Extraction of Carnosic Acid from Rosemary with Short-Chain Alkyl Polyethylene Glycol Ethers. ACS Sustainable Chemistry and Engineering, 2020, 8, 15268-15277.	3.2	11
17	One-pot oxidative cleavage of cyclic olefins for the green synthesis of dicarboxylic acids in Pickering emulsions in the presence of acid phosphate additives. Catalysis Science and Technology, 2020, 10, 6723-6728.	2.1	5
18	Emulsions Stabilized with Alumina-Functionalized Mesoporous Silica Particles. Langmuir, 2020, 36, 3212-3220.	1.6	9

#	Article	IF	Citations
19	A New Machine-Learning Tool for Fast Estimation of Liquid Viscosity. Application to Cosmetic Oils. Journal of Chemical Information and Modeling, 2020, 60, 2012-2023.	2.5	20
20	Phytochemical- and Cyclodextrin-Based Pickering Emulsions: Natural Potentiators of Antibacterial, Antifungal, and Antibiofilm Activity. Langmuir, 2020, 36, 4317-4323.	1.6	17
21	Microfluidic emulsification: Process and formulation variables effects in flow behavior pattern on a flow-focusing device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125038.	2.3	1
22	Colloidal tectonics for tandem synergistic Pickering interfacial catalysis: oxidative cleavage of cyclohexene oxide into adipic acid. Chemical Science, 2019, 10, 501-507.	3.7	30
23	Supramolecular Chemistry and Self-Organization: A Veritable Playground for Catalysis. Catalysts, 2019, 9, 163.	1.6	22
24	Physicochemical investigations of native nails and synthetic models for a better understanding of surface adhesion of nail lacquers. European Journal of Pharmaceutical Sciences, 2019, 131, 208-217.	1.9	5
25	Dual Catalytic Role of Molybdate Ions for Direct Conversion of Photo-oxidized Fatty Acid Methyl Esters into Keto or Hydroxy Derivatives. ACS Sustainable Chemistry and Engineering, 2019, 7, 3034-3041.	3.2	3
26	Synthesis and Surfactant Properties of Nonionic Biosourced Alkylglucuronamides. ACS Sustainable Chemistry and Engineering, 2018, 6, 2758-2766.	3.2	19
27	Revisiting the influence of carboxylic acids on emulsions and equilibrated SOW systems using the PIT-slope method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 191-197.	2.3	3
28	Prediction of the equivalent alkane carbon number (EACN) of aprotic polar oils with COSMO-RS sigma-moments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 53-59.	2.3	11
29	Hybrid Core–Shell Nanoparticles by "Plug and Play―Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, 17672-17676.	1.7	11
30	Hydroquinoneâ€Based Biarylic Polyphenols as Redox Organocatalysts for Dioxygen Reduction: Dramatic Effect of Orcinol Substituent on the Catalytic Activity. Advanced Synthesis and Catalysis, 2017, 359, 268-278.	2.1	5
31	Supramolecular "Big Bang―in a Single-Ionic Surfactant/Water System Driven by Electrostatic Repulsion: From Vesicles to Micelles. Langmuir, 2017, 33, 3395-3403.	1.6	6
32	Acidic/amphiphilic silica nanoparticles: new eco-friendly Pickering interfacial catalysis for biodiesel production. Green Chemistry, 2017, 19, 4552-4562.	4.6	68
33	Predicting the Surface Tension of Liquids: Comparison of Four Modeling Approaches and Application to Cosmetic Oils. Journal of Chemical Information and Modeling, 2017, 57, 2986-2995.	2.5	22
34	One-Pot Synthesis of (+)-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst. Catalysts, 2016, 6, 184.	1.6	9
35	Theoretical and Kinetic Tools for Selecting Effective Antioxidants: Application to the Protection of Omega-3 Oils with Natural and Synthetic Phenols. International Journal of Molecular Sciences, 2016, 17, 1220.	1.8	30
36	Readily biodegradable and low-toxic biocompatible ionic liquids for cellulose processing. RSC Advances, 2016, 6, 87325-87331.	1.7	27

#	Article	IF	Citations
37	Aqueous solutions of didecyldimethylammonium chloride and octaethylene glycol monododecyl ether: Toward synergistic formulations against enveloped viruses. International Journal of Pharmaceutics, 2016, 511, 550-559.	2.6	8
38	Supramolecular assistance between cyclodextrins and didecyldimethylammonium chloride against enveloped viruses: Toward eco-biocidal formulations. International Journal of Pharmaceutics, 2016, 512, 273-281.	2.6	9
39	Acyl Poly(Glycerolâ€Succinic Acid) Oligoesters: Synthesis, Physicochemical and Functional Properties, and Biodegradability. Journal of Surfactants and Detergents, 2016, 19, 933-941.	1.0	10
40	Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to $\hat{l}\pm$ -tocopherol for the preservation of omega-3 oils. Food Chemistry, 2016, 213, 284-295.	4.2	61
41	Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery. European Journal of Pharmaceutical Sciences, 2016, 82, 126-137.	1.9	78
42	Boosting effect of ortho- propenyl substituent on the antioxidant activity of natural phenols. Food Chemistry, 2016, 196, 418-427.	4.2	26
43	Glycerol acetals and ketals as bio-based solvents: positioning in Hansen and COSMO-RS spaces, volatility and stability towards hydrolysis and autoxidation. Green Chemistry, 2015, 17, 1779-1792.	4.6	59
44	Pickering Interfacial Catalysis for Biphasic Systems: From Emulsion Design to Green Reactions. Angewandte Chemie - International Edition, 2015, 54, 2006-2021.	7.2	376
45	Dramatic influence of fragrance alcohols and phenols on the phase inversion temperature of the Brij30/n-octane/water system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 478, 54-61.	2.3	9
46	Self-Assembled Polyoxometalates Nanoparticles as Pickering Emulsion Stabilizers. Journal of Physical Chemistry B, 2015, 119, 6326-6337.	1.2	23
47	Rationalization and Prediction of the Equivalent Alkane Carbon Number (EACN) of Polar Hydrocarbon Oils with COSMO-RS Ïf-Moments. Langmuir, 2015, 31, 11220-11226.	1.6	15
48	Nanometer-Size Polyoxometalate Anions Adsorb Strongly on Neutral Soft Surfaces. Journal of Physical Chemistry C, 2015, 119, 20985-20992.	1.5	91
49	Synergy between bis(dimethyldioctylammonium) molybdate and tetraethylene glycol monooctyl ether: A winning combination for interfacial catalysis in thermo-controlled and switchable microemulsions. Journal of Molecular Catalysis A, 2015, 397, 142-149.	4.8	8
50	Encapsulation of biocides by cyclodextrins: toward synergistic effects against pathogens. Beilstein Journal of Organic Chemistry, 2014, 10, 2603-2622.	1.3	36
51	Selective Oxidation in DSM: Innovative Catalysts and Technologies. , 2014, , 382-419.		0
52	Fragrance solubilization in temperature insensitive aqueous microemulsions based on synergistic mixtures of nonionic and anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 85-95.	2.3	35
53	Succinylation of Nonâ€ionic Surfactants: Physicochemical Characterization, Functional Properties, Biodegradability and Mathematical Modeling of the Polarity Tuning. Journal of Surfactants and Detergents, 2014, 17, 591-602.	1.0	4
54	Eco-friendly solvents and amphiphilic catalytic polyoxometalate nanoparticles: a winning combination for olefin epoxidation. Green Chemistry, 2014, 16, 269-278.	4.6	70

#	Article	IF	CITATIONS
55	Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, \hat{I}^3 -valerolactone and water. Green Chemistry, 2014, 16, 2463-2471.	4.6	52
56	Dramatic synergistic effects between hydroquinone and resorcinol derivatives for the organocatalyzed reduction of dioxygen by diethylhydroxylamine. Chemical Communications, 2014, 50, 866-868.	2.2	4
57	Supramolecular Colloidosomes Based on Tri(dodecyltrimethylammonium) Phosphotungstate: A Bottom-Up Approach. Langmuir, 2014, 30, 5386-5393.	1.6	12
58	Dramatic solvent effect on the synergy between \hat{l}_{\pm} -tocopherol and BHT antioxidants. Food Chemistry, 2014, 160, 190-195.	4.2	18
59	Trapping of Dioxygen Dissolved in Water by Alkylhydroxylamines: A Comparison of Hydroquinone, Gallic Acid and Aminophenols as Organocatalysts. Topics in Catalysis, 2013, 56, 933-938.	1.3	3
60	Matrix effect on the degradation of fragrant aldehydes: oxidation versus chlorination in an antiperspirant formulation. Flavour and Fragrance Journal, 2013, 28, 316-326.	1,2	1
61	Binary and Ternary Phase Behaviors of Short Double-Chain Quaternary Ammonium Amphiphiles: Surface Tension, Polarized Optical Microscopy, and SAXS Investigations. Journal of Physical Chemistry B, 2013, 117, 14732-14742.	1.2	12
62	Dual role of phenols as fragrances and antioxidants: mechanism, kinetics and drastic solvent effect. Flavour and Fragrance Journal, 2013, 28, 30-38.	1,2	29
63	Acidic Threeâ€Liquidâ€Phase Microemulsion Systems Based on Balanced Catalytic Surfactant for Epoxidation and Sulfide Oxidation under Mild Conditions. Advanced Synthesis and Catalysis, 2013, 355, 409-420.	2.1	14
64	Modeling of Multiple Equilibria in the Self-Aggregation of Di- <i>n</i> -decyldimethylammonium Chloride/Octaethylene Glycol Monododecyl Ether/Cyclodextrin Ternary Systems. Langmuir, 2013, 29, 6242-6252.	1.6	16
65	Synthesis, characterization, biodegradability and surfactant properties of bio-sourced lauroyl poly(glycerol-succinate) oligoesters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 263-273.	2.3	26
66	Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over intercalated vanadium phosphate oxides. RSC Advances, 2013, 3, 9942.	1.7	64
67	Versatile Ecoâ€friendly Pickering Emulsions Based on Substrate/Native Cyclodextrin Complexes: A Winning Approach for Solventâ€Free Oxidations. ChemSusChem, 2013, 6, 1533-1540.	3.6	53
68	Acidic Pretreatment of Wheat Straw in Decanol for the Production of Surfactant, Lignin and Glucose. International Journal of Molecular Sciences, 2012, 13, 348-357.	1.8	16
69	Surface pressure induced 2D-crystallization of POM-based surfactants: preparation of nanostructured thin films. CrystEngComm, 2012, 14, 8446.	1.3	12
70	Pickering Emulsion Stabilized by Catalytic Polyoxometalate Nanoparticles: A New Effective Medium for Oxidation Reactions. Chemistry - A European Journal, 2012, 18, 14352-14358.	1.7	99
71	Characterization, stability and ecotoxic properties of readily biodegradable branched oligoesters based on bio-sourced succinic acid and glycerol. Polymer Degradation and Stability, 2012, 97, 1956-1963.	2.7	22
72	Natural polyphenols as safe alternatives to hydroquinone for the organocatalyzed reduction of dioxygen dissolved in water by diethylhydroxylamine (DEHA). Green Chemistry, 2012, 14, 825.	4.6	10

#	Article	IF	CITATIONS
73	Aqueous mixtures of di-n-decyldimethylammonium chloride/polyoxyethylene alkyl ether: Dramatic influence of tail/tail and head/head interactions on co-micellization and biocidal activity. Journal of Colloid and Interface Science, 2012, 374, 176-186.	5.0	25
74	Supramolecular effects on the antifungal activity of cyclodextrin/di-n-decyldimethylammonium chloride mixtures. European Journal of Pharmaceutical Sciences, 2012, 46, 336-345.	1.9	24
75	Counter Anion Effect on the Self-Aggregation of Dimethyl-di- <i>N</i> Behavior between Hydrotropes and Surfactants. Journal of Physical Chemistry B, 2011, 115, 11619-11630.	1.2	13
76	Stepwise Aggregation of Dimethyl-di- <i>n</i> -octylammonium Chloride in Aqueous Solutions: From Dimers to Vesicles. Langmuir, 2010, 26, 1716-1723.	1.6	27
77	Synthesis, physico-chemical properties and complexing abilities of new amphiphilic ligands from d-galacturonic acid. Carbohydrate Research, 2010, 345, 731-739.	1.1	16
78	Structure–activity relationship of cyclodextrin/biocidal double-tailed ammonium surfactant host–guest complexes: Towards a delivery molecular mechanism?. European Journal of Pharmaceutical Sciences, 2010, 41, 265-275.	1.9	25
79	Dimethylsulfoxide as a kinetic booster for the chemical generation of singlet oxygen in methanol. Tetrahedron Letters, 2010, 51, 6531-6534.	0.7	0
80	A QSPR Model for the Prediction of the "Fish-Tail―Temperature of C _{<i>i</i>} E ₄ /Water/Polar Hydrocarbon Oil Systems. Langmuir, 2010, 26, 7962-7970.	1.6	32
81	"Dark―Singlet Oxygenation of β-Citronellol: A Key Step in the Manufacture of Rose Oxide. Organic Process Research and Development, 2010, 14, 259-262.	1.3	59
82	Classification of terpene oils using the fish diagrams and the Equivalent Alkane Carbon (EACN) scale. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338, 142-147.	2.3	41
83	Optimisation of the chemical generation of singlet oxygen (102, 1Δg) from the hydrogen peroxide–lanthanum(iii) catalytic system using an improved NIR spectrometer. Photochemical and Photobiological Sciences, 2009, 8, 1024.	1.6	3
84	Singlet Oxygen Generation from [Bis(trifluoroacetoxy)iodo]benzene and Hydrogen Peroxide. Journal of Organic Chemistry, 2009, 74, 4560-4564.	1.7	28
85	Lyotropic liquid crystal behaviour of azelate and succinate monoester surfactants based on fragrance alcohols. Journal of Colloid and Interface Science, 2008, 321, 177-185.	5.0	3
86	Oxidation in Three-Liquid-Phase Microemulsion Systems Using "Balanced Catalytic Surfactants― Journal of the American Chemical Society, 2008, 130, 14914-14915.	6.6	48