Le Questel Jy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/146866/publications.pdf

Version: 2024-02-01

218381 223531 2,511 93 26 46 h-index citations g-index papers 97 97 97 3208 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The p <i>K</i> _{BHX} Hydrogen-Bond Basicity Scale: From Molecules to Anions. Journal of Organic Chemistry, 2022, 87, 7264-7273.	1.7	3
2	Hydrogen-bond acidity of silanols: A combined experimental and theoretical study. Journal of Molecular Structure, 2022, 1266, 133505.	1.8	1
3	An expanded halogen bonding scale using astatine. Chemical Science, 2021, 12, 10855-10861.	3.7	7
4	Astatine Facing Janus: Halogen Bonding vs. Charge-Shift Bonding. Molecules, 2021, 26, 4568.	1.7	3
5	Mode of Action of Neonicotinoid Insecticides Imidacloprid and Thiacloprid to the Cockroach Pamel±7 Nicotinic Acetylcholine Receptor. International Journal of Molecular Sciences, 2021, 22, 9880.	1.8	7
6	Systematic Investigation of Lipophilicity Modulation by Aliphatic Fluorination Motifs. Journal of Medicinal Chemistry, 2020, 63, 1002-1031.	2.9	83
7	Questioning the Affinity of Electrophilic Astatine for Sulfur-containing Compounds: Unexpected Bindings Revealed. Inorganic Chemistry, 2020, 59, 13923-13932.	1.9	15
8	Lipophilicity trends upon fluorination of isopropyl, cyclopropyl and 3-oxetanyl groups. Beilstein Journal of Organic Chemistry, 2020, 16, 2141-2150.	1.3	13
9	Cloning and Expression of Cockroach $\hat{l}\pm7$ Nicotinic Acetylcholine Receptor Subunit. Frontiers in Physiology, 2020, 11, 418.	1.3	6
10	Characterization of Steroids through Collision Cross Sections: Contribution of Quantum Chemistry Calculations. Analytical Chemistry, 2020, 92, 6034-6042.	3.2	12
11	Synergic effect of a quinuclidine benzamide complexed with borane, the LMA10233, in combination with seven pesticides. Pesticide Biochemistry and Physiology, 2020, 168, 104633.	1.6	1
12	Binding of Sulfoxaflor to Aplysia californica-AChBP: Computational Insights from Multiscale Approaches. Journal of Chemical Information and Modeling, 2019, 59, 3755-3769.	2.5	8
13	Mechanistic and Structural Insights on the IL-15 System through Molecular Dynamics Simulations. Molecules, 2019, 24, 3261.	1.7	2
14	Di- and heptavalent nicotinic analogues to interfere with $\hat{l}\pm7$ nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry, 2019, 27, 700-707.	1.4	4
15	Mode of action of sulfoxaflor on α-bungarotoxin-insensitive nAChR1 and nAChR2 subtypes: Inhibitory effect of imidacloprid. NeuroToxicology, 2019, 74, 132-138.	1.4	13
16	3,4-Dideoxy-3,3,4,4-tetrafluoro- and 4-OH epimeric 3-deoxy-3,3-difluoro-α-GalCer analogues: Synthesis and biological evaluation on human iNKT cells stimulation. European Journal of Medicinal Chemistry, 2019, 178, 195-213.	2.6	11
17	Synthesis of 2,3,4-Trideoxy-2,3,4-trifluoroglucose. Journal of Organic Chemistry, 2019, 84, 5899-5906.	1.7	16
18	Influence of fluorination on alcohol hydrogen-bond donating properties. , 2019, , 301-324.		2

#	Article	IF	CITATIONS
19	Quantum calculations of At-mediated halogen bonds: on the influence of relativistic effects. New Journal of Chemistry, 2018, 42, 10510-10517.	1.4	25
20	Spin–orbit coupling as a probe to decipher halogen bonding. Physical Chemistry Chemical Physics, 2018, 20, 29616-29624.	1.3	21
21	Reducing the Lipophilicity of Perfluoroalkyl Groups by CF ₂ –F/CF ₂ –Me or CF ₃ /CH ₃ Exchange. Journal of Medicinal Chemistry, 2018, 61, 10602-10618.	2.9	66
22	Conformations and Binding Properties of Thiametoxam and Clothianidin Neonicotinoid Insecticides to Nicotinic Acetylcholine Receptors: The Contribution of Ïfâ€Hole Interactions. ChemPhysChem, 2018, 19, 3069-3083.	1.0	7
23	Permethrin enhances the agonist activity of dinotefuran on insect cholinergic synaptic transmission and isolated neurons. NeuroToxicology, 2018, 67, 206-214.	1.4	4
24	Influence of Alcohol βâ€Fluorination on Hydrogenâ€Bond Acidity of Conformationally Flexible Substrates. Chemistry - A European Journal, 2017, 23, 2811-2819.	1.7	31
25	A Study of Intramolecular Hydrogen Bonding in Levoglucosan Derivatives. Molecules, 2017, 22, 518.	1.7	14
26	αâ€Fluoroâ€∢i>oàê€resols: The Key Role of Intramolecular Hydrogen Bonding in Conformational Preference and Hydrogenâ€Bond Acidity. ChemPhysChem, 2016, 17, 2702-2709.	1.0	12
27	Predictive Models for Halogenâ€bond Basicity of Binding Sites of Polyfunctional Molecules. Molecular Informatics, 2016, 35, 70-80.	1.4	12
28	Hydrogen-Bond Accepting Properties of New Heteroaromatic Ring Chemical Motifs: A Theoretical Study. Journal of Chemical Information and Modeling, 2016, 56, 322-334.	2.5	31
29	Influence of Fluorination on the Conformational Properties and Hydrogenâ€Bond Acidity of Benzyl Alcohol Derivatives. Chemistry - A European Journal, 2015, 21, 11462-11474.	1.7	25
30	Intramolecular OHâ«â«â«Fluorine Hydrogen Bonding in Saturated, Acyclic Fluorohydrins: The γâ€Fluoropropanol Motif. Chemistry - A European Journal, 2015, 21, 17808-17816.	1.7	41
31	Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera). Insects, 2015, 6, 805-814.	1.0	18
32	Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation. Journal of Computer-Aided Molecular Design, 2015, 29, 1151-1167.	1.3	8
33	Molecular features and toxicological properties of four common pesticides, acetamiprid, deltamethrin, chlorpyriphos and fipronil. Bioorganic and Medicinal Chemistry, 2015, 23, 1540-1550.	1.4	23
34	Dissymmetric Molecular Tweezers in Host–Guest Complexes: Internal or External Complexation?. Journal of Physical Chemistry C, 2015, 119, 3771-3779.	1.5	6
35	Imidacloprid and thiacloprid neonicotinoids bind more favourably to cockroach than to honeybee $\hat{1}\pm 6$ nicotinic acetylcholine receptor: Insights from computational studies. Journal of Molecular Graphics and Modelling, 2015, 55, 1-12.	1.3	13
36	Insights into a highly conserved network of hydrogen bonds in the agonist binding site of nicotinic acetylcholine receptors: A structural and theoretical study. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2303-2317.	1.5	1

#	Article	IF	Citations
37	Individual Hydrogenâ€Bond Strength QSPR Modelling with ISIDA Local Descriptors: a Step Towards Polyfunctional Molecules. Molecular Informatics, 2014, 33, 477-487.	1.4	19
38	Fluorescent carboxylic and phosphonic acids: comparative photophysics from solution to organic nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 12748.	1.3	15
39	Hydrogen-Bond Acidity of OH Groups in Various Molecular Environments (Phenols, Alcohols, Steroid) Tj ETQq1 Calculations. Journal of Physical Chemistry A, 2013, 117, 13184-13193.	1 0.78431 1.1	4 rgBT /Overl 43
40	Pretreatment of the cockroach cercal afferent/giant interneuron synapses with nicotinoids and neonicotinoids differently affects acetylcholine and nicotine-induced ganglionic depolarizations. Invertebrate Neuroscience, 2013, 13, 91-97.	1.8	0
41	Halogen-bond interactions: a crystallographic basicity scale towards iodoorganic compounds. CrystEngComm, 2013, 15, 3212.	1.3	58
42	Interpretation of experimental hydrogen-bond enthalpies and entropies from COSMO polarisation charge densities. Physical Chemistry Chemical Physics, 2013, 15, 7147.	1.3	36
43	New Insights on the Molecular Recognition of Imidacloprid with Aplysia californica AChBP: A Computational Study. Journal of Physical Chemistry B, 2013, 117, 3944-3953.	1.2	20
44	Cytochrome P450-Catalyzed Degradation of Nicotine: Fundamental Parameters Determining Hydroxylation by Cytochrome P450 2A6 at the 5′-Carbon or the ⟨i⟩N⟨/i⟩-Methyl Carbon. Journal of Physical Chemistry B, 2012, 116, 7827-7840.	1.2	14
45	3-Fluoro- and 3,3-Difluoro-3,4-dideoxy-KRN7000 Analogues as New Potent Immunostimulator Agents: Total Synthesis and Biological Evaluation in Human Invariant Natural Killer T Cells and Mice. Journal of Medicinal Chemistry, 2012, 55, 1227-1241.	2.9	21
46	Mapping of the interaction sites of galanthamine: a quantitative analysis through pairwise potentials and quantum chemistry. Journal of Computer-Aided Molecular Design, 2012, 26, 1111-1126.	1.3	1
47	Molecular Tweezers in Host–Guest Complexes: A Computational Study through a DFT-D Approach. Journal of Physical Chemistry C, 2012, 116, 23067-23074.	1.5	7
48	Study of N1-alkylation of indoles from the reaction of 2(or 3)-aminoindole-3-(or 2)carbonitriles with DMF-dialkylacetals. Organic and Biomolecular Chemistry, 2012, 10, 4916.	1.5	13
49	An Unexpected and Significantly Lower Hydrogenâ€Bondâ€Donating Capacity of Fluorohydrins Compared to Nonfluorinated Alcohols. Angewandte Chemie - International Edition, 2012, 51, 6176-6180.	7.2	80
50	Cytochrome P450 Monooxygenaseâ€Catalyzed Ring Opening of the Bicyclic Amine, Nortropine: An Experimental and DFT Computational Study. ChemCatChem, 2012, 4, 530-539.	1.8	6
51	A DFT-D evaluation of the complexation of a molecular tweezer with small aromatic molecules. Chemical Physics Letters, 2012, 522, 11-16.	1.2	17
52	Structural features and protonation site of epibatidine in the gas phase: an investigation through infrared multiphoton dissociation spectroscopy and computational chemistry. Physical Chemistry Chemical Physics, 2011, 13, 2272-2277.	1.3	1
53	New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides. Bioorganic and Medicinal Chemistry, 2011, 19, 7623-7634.	1.4	39
54	Structural Features and Hydrogenâ€Bond Properties of Galanthamine and Codeine: An Experimental and Theoretical Study. Chemistry - A European Journal, 2011, 17, 11637-11649.	1.7	15

#	Article	IF	CITATIONS
55	Electrochemical Synthesis and Characterisation of Alternating Tripyridyl–Dipyrrole Molecular Strands with Multiple Nitrogenâ€Based Donor–Acceptor Binding Sites. Chemistry - A European Journal, 2010, 16, 11876-11889.	1.7	12
56	Theoretical Study of the Structures and Hydrogen-Bond Properties of New Alternated Heterocyclic Compounds. Journal of Physical Chemistry A, 2010, 114, 6413-6422.	1.1	12
57	An Enthalpic Scale of Hydrogen-Bond Basicity. 4. Carbon π Bases, Oxygen Bases, and Miscellaneous Second-Row, Third-Row, and Fourth-Row Bases and a Survey of the 4-Fluorophenol Affinity Scale. Journal of Organic Chemistry, 2010, 75, 4105-4123.	1.7	79
58	Hydrogenâ€Bond Accepting Strength of Fiveâ€Membered Nâ€Heterocycles:The Case of Substituted Phenylpyrrolines and Myosmines. European Journal of Organic Chemistry, 2009, 2009, 4939-4948.	1.2	9
59	The p <i>K</i> _{BHX} Database: Toward a Better Understanding of Hydrogen-Bond Basicity for Medicinal Chemists. Journal of Medicinal Chemistry, 2009, 52, 4073-4086.	2.9	276
60	Hydrogen-bonding properties of galanthamine: an investigation through crystallographic database observations and computational chemistry. Acta Crystallographica Section B: Structural Science, 2008, 64, 338-347.	1.8	4
61	The Exceptional Hydrogen-Bond Properties of Neutral and Protonated Lobeline. Journal of Physical Chemistry A, 2007, 111, 6397-6405.	1.1	22
62	Hydrogen-Bond Interactions of Nicotine and Acetylcholine Salts: A Combined Crystallographic, Spectroscopic, Thermodynamic and Theoretical Study. Chemistry - A European Journal, 2007, 13, 1499-1510.	1.7	17
63	Structural features of neutral and protonated galanthamine: A crystallographic database and computational investigation. Chemical Physics, 2006, 328, 307-317.	0.9	8
64	Hydrogen-Bond Accepting Strength of Protonated Nicotine. Journal of Physical Chemistry A, 2005, 109, 3767-3770.	1.1	13
65	Multiple Hydrogen-Bond Accepting Capacities of Polybasic Molecules:  The Case of Cotinine. Journal of Physical Chemistry A, 2004, 108, 10740-10748.	1.1	15
66	Selenoxides Are Better Hydrogen-Bond Acceptors than Sulfoxides:Â a Crystallographic Database and Theoretical Investigation. Journal of Physical Chemistry A, 2004, 108, 7232-7240.	1.1	11
67	Halogen-bond geometry: a crystallographic database investigation of dihalogen complexes. Acta Crystallographica Section B: Structural Science, 2003, 59, 512-526.	1.8	127
68	The Nicotinic Pharmacophore:Â Thermodynamics of the Hydrogen-Bonding Complexation of Nicotine, Nornicotine, and Models. Journal of Organic Chemistry, 2003, 68, 8208-8221.	1.7	42
69	The first crystal structure of a free neutral form of a nicotine derivative. Zeitschrift Fur Kristallographie - Crystalline Materials, 2003, 218, 753-760.	0.4	6
70	Site of Protonation of Nicotine and Nornicotine in the Gas Phase: Pyridine or Pyrrolidine Nitrogen?. Journal of the American Chemical Society, 2002, 124, 10552-10562.	6.6	77
71	Amino nitrogen and carbonyl oxygen in competitive situations: which is the best hydrogen-bond acceptor site?. CrystEngComm, 2002, 4, 326-335.	1.3	22
72	Synthesis of Oligothiophene-Bridged Bisporphyrins and Study of the Linkage Dependence of the Electronic Coupling. Chemistry - A European Journal, 2002, 8, 3027.	1.7	94

#	Article	IF	Citations
73	Amino and cyano N atoms in competitive situations: which is the best hydrogen-bond acceptor? A crystallographic database investigation. Acta Crystallographica Section B: Structural Science, 2001, 57, 850-858.	1.8	34
74	Semiempirical and spectroscopic study of a novel porphyrin dyad. International Journal of Quantum Chemistry, 2001, 84, 259-263.	1.0	7
75	Hydrogen-bond acceptor properties of nitriles: a combined crystallographic andab initio theoretical investigation. Journal of Physical Organic Chemistry, 2000, 13, 347-358.	0.9	123
76	Hydrogen Bonding of Progesterone: a Combined Theoretical, Spectroscopic, Thermodynamic, and Crystallographic Database Study. Journal of Physical Chemistry B, 2000, 104, 11816-11823.	1.2	29
77	Hydrogen-bond acceptor properties of nitriles: a combined crystallographic and ab initio theoretical investigation., 2000, 13, 347.		2
78	Hydrogen-bond basicity pKHB scale of aliphatic primary amines. Journal of the Chemical Society Perkin Transactions II, 1999, , 997.	0.9	36
79	Structure and molecular interactions of anti-thyroid drugs. Part 3.1 Methimazole: a diiodine sponge. Journal of the Chemical Society Perkin Transactions II, 1998, , 1545-1552.	0.9	78
80	Can semi-empirical calculations yield reasonable estimates of hydrogen-bonding basicity? The case of nitriles. Journal of the Chemical Society Perkin Transactions II, 1997, , 2711-2718.	0.9	16
81	Basicity of azoles: complexes of diiodine with imidazoles, pyrazoles and triazoles. Journal of Physical Organic Chemistry, 1997, 10, 669-674.	0.9	27
82	The crystal and molecular structures of 4-cyanophenyl 1,5-dithio-Î ² -d-xylopyranoside S-5 oxide and 4-ethyl-2-oxo-2H- 1-benzopyran-7-yl 5-thio-Î ² -d-xylopyranoside S-5 oxide. Carbohydrate Research, 1997, 302, 53-66.	1.1	10
83	Molecular structure of [4-(4-cyanobenzoyl) phenyl] $1,5$ -dithio- \hat{l}^2 -d-xylopyranoside (naroparcil) in the solid state and in solution: An investigation by X-ray crystallography, molecular mechanics calculations, and NMR spectroscopy. Carbohydrate Research, 1996, 284, 35-49.	1.1	2
84	The crystal and molecular structure of 4-cyanophenyl 5-thio- \hat{l}^2 -d-xylopyranoside. Carbohydrate Research, 1995, 268, 127-133.	1.1	2
85	Computer modelling of sulfated carbohydrates: Applications to carrageenans. International Journal of Biological Macromolecules, 1995, 17, 161-175.	3.6	54
86	Hydrogen-bond basicity of thioamides and thioureas. Journal of the Chemical Society Perkin Transactions II, 1995, , 2075.	0.9	39
87	The crystal and molecular structure of 4-cyanophenyl and 4-nitrophenyl \hat{l}^2 -d-xylopyranosides. Carbohydrate Research, 1994, 265, 291-298.	1.1	4
88	Hydrogen-bond basicity of nitriles. Journal of Physical Organic Chemistry, 1993, 6, 302-306.	0.9	47
89	Common Ring Motifs in Proteins Involving Asparagine or Glutamine Amide Groups Hydrogen-bonded to Main-chain Atoms. Journal of Molecular Biology, 1993, 231, 888-896.	2.0	19
90	Super-basic nitriles. Journal of the Chemical Society Perkin Transactions II, 1993, , 625.	0.9	28

LE QUESTEL JY

#	Article	IF	CITATIONS
91	Hydrogen-bond basicity of secondary and tertiary amides, carbamates, ureas and lactams. Journal of the Chemical Society Perkin Transactions II, 1992, , 2091.	0.9	74
92	Gas-phase basicity and site of protonation of polyfunctional molecules of biological interest: FT-ICR experiments and AM1 calculations on nicotines, nicotinic acid derivatives, and related compounds. Journal of Organic Chemistry, 1991, 56, 4490-4494.	1.7	37
93	Substituent effects in infrared spectroscopyâ€"XI. Field effects of 4-substituents on the ν(OH) vibrator of isoborneols. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 1649-1652.	0.1	1