
Omid Zabihi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1468574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Composites Part B: Engineering, 2018, 135, 1-24.	5.9	195
2	The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber. Materials, 2017, 10, 180.	1.3	144
3	A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA. RSC Advances, 2017, 7, 8694-8701.	1.7	117
4	Carbon fibre surface modification using functionalized nanoclay: A hierarchical interphase for fibre-reinforced polymer composites. Composites Science and Technology, 2017, 148, 49-58.	3.8	91
5	Synergistic effect of MWCNTs functionalization on interfacial and mechanical properties of multi-scale UHMWPE fibre reinforced epoxy composites. Composites Science and Technology, 2016, 134, 1-11.	3.8	87
6	2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites. Journal of Materials Chemistry A, 2020, 8, 845-883.	5.2	83
7	Balancing the toughness and strength in polypropylene composites. Composites Part B: Engineering, 2021, 223, 109121.	5.9	75
8	Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polymer Degradation and Stability, 2012, 97, 3-13.	2.7	63
9	Dynamic Prediction Models and Optimization of Polyacrylonitrile (PAN) Stabilization Processes for Production of Carbon Fiber. IEEE Transactions on Industrial Informatics, 2015, 11, 887-896.	7.2	59
10	One-pot synthesis of aminated multi-walled carbon nanotube using thiol-ene click chemistry for improvement of epoxy nanocomposites properties. RSC Advances, 2015, 5, 98692-98699.	1.7	57
11	Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling. New Journal of Chemistry, 2015, 39, 2269-2278.	1.4	54
12	Catalyzed Synthesis and Characterization of a Novel Lignin-Based Curing Agent for the Curing of High-Performance Epoxy Resin. Polymers, 2017, 9, 266.	2.0	52
13	The effect of zinc oxide nanoparticles on thermo-physical properties of diglycidyl ether of bisphenol A/2,2′-Diamino-1,1′-binaphthalene nanocomposites. Thermochimica Acta, 2011, 521, 49-58.	1.2	49
14	Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance. Scientific Reports, 2016, 6, 38194.	1.6	47
15	Isothermal curing behavior and thermo-physical properties of epoxy-based thermoset nanocomposites reinforced with Fe2O3 nanoparticles. Thermochimica Acta, 2012, 527, 190-198.	1.2	44
16	Nano-enhanced interface in carbon fibre polymer composite using halloysite nanotubes. Composites Part A: Applied Science and Manufacturing, 2018, 109, 115-123.	3.8	42
17	One-step amino-functionalization of milled carbon fibre for enhancement of thermo-physical properties of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2016, 88, 243-252.	3.8	41
18	Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Research on Chemical Intermediates, 2017, 43, 1235-1251.	1.3	40

Omid Zabihi

#	Article	IF	CITATIONS
19	A sustainable approach to scalable production of a graphene based flame retardant using waste fish deoxyribonucleic acid. Journal of Cleaner Production, 2020, 247, 119150.	4.6	38
20	Development of a low cost and green microwave assisted approach towards the circular carbon fibre composites. Composites Part B: Engineering, 2020, 184, 107750.	5.9	37
21	Self-assembly of quaternized chitosan nanoparticles within nanoclay layers for enhancement of interfacial properties in toughened polymer nanocomposites. Materials and Design, 2017, 119, 277-289.	3.3	34
22	Metal–organic framework structure–property relationships for high-performance multifunctional polymer nanocomposite applications. Journal of Materials Chemistry A, 2021, 9, 4348-4378.	5.2	34
23	Hydrophilic PAN based carbon nanofibres with improved graphitic structure and enhanced mechanical performance using ethylenediamine functionalized graphene. RSC Advances, 2017, 7, 2621-2628.	1.7	32
24	A Sustainable Approach to the Low-Cost Recycling of Waste Glass Fibres Composites towards Circular Economy. Sustainability, 2020, 12, 641.	1.6	32
25	Enhanced photocatalytic activities of TiO2–SiO2 nanohybrids immobilized on cement-based materials for dye degradation. Research on Chemical Intermediates, 2016, 42, 2963-2978.	1.3	30
26	Collision-induced activation: Towards industrially scalable approach to graphite nanoplatelets functionalization for superior polymer nanocomposites. Scientific Reports, 2017, 7, 3560.	1.6	30
27	Nano-CuO/Epoxy Composites: Thermal Characterization and Thermo-Oxidative Degradation. International Journal of Polymer Analysis and Characterization, 2012, 17, 108-121.	0.9	26
28	Study on a novel thermoset nanocomposite form DGEBA–cycloaliphatic diamine and metal nanoparticles. Journal of Thermal Analysis and Calorimetry, 2013, 111, 703-710.	2.0	25
29	Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3. Journal of Thermal Analysis and Calorimetry, 2012, 108, 1251-1260.	2.0	24
30	Low-Cost Carbon Fibre Derived from Sustainable Coal Tar Pitch and Polyacrylonitrile: Fabrication and Characterisation. Materials, 2019, 12, 1281.	1.3	22
31	Novel Phosphorous-Based Deep Eutectic Solvents for the Production of Recyclable Macadamia Nutshell–Polymer Biocomposites with Improved Mechanical and Fire Safety Performances. ACS Sustainable Chemistry and Engineering, 2021, 9, 4463-4476.	3.2	21
32	The reinforcing role of 2D graphene analogue MoS2 nanosheets in multiscale carbon fibre composites: Improvement of interfacial adhesion. Composites Science and Technology, 2021, 207, 108717.	3.8	21
33	Organophosphorus-Functionalized Zirconium-Based Metal–Organic Framework Nanostructures for Improved Mechanical and Flame Retardant Polymer Nanocomposites. ACS Applied Nano Materials, 2021, 4, 13027-13040.	2.4	21
34	Interfacial evaluation of epoxy/carbon nanofiber nanocomposite reinforced with glycidyl methacrylate treated UHMWPE fiber. Journal of Applied Polymer Science, 2016, 133, .	1.3	20
35	Biobased Carbon Fiber Composites with Enhanced Flame Retardancy: A Cradle-to-Cradle Approach. ACS Sustainable Chemistry and Engineering, 2022, 10, 1059-1069.	3.2	20
36	Preparation and characterization of toughened composites of epoxy/poly(3,4-ethylenedioxythiophene) nanotube: Thermal, mechanical and electrical properties. Composites Part B: Engineering, 2013, 45, 1480-1485.	5.9	19

Omid Zabihi

#	Article	IF	CITATIONS
37	Simultaneous electrochemical-assisted exfoliation and in situ surface functionalization towards large-scale production of few-layer graphene. FlatChem, 2019, 18, 100132.	2.8	19
38	Modeling of phenomenological mechanisms during thermal formation and degradation of an epoxy-based nanocomposite. Thermochimica Acta, 2012, 543, 239-245.	1.2	18
39	A Hydrothermal-Assisted Ball Milling Approach for Scalable Production of High-Quality Functionalized MoS2 Nanosheets for Polymer Nanocomposites. Nanomaterials, 2019, 9, 1400.	1.9	18
40	Investigation of mechanical properties and cure behavior of DGEBA/nano-Fe2O3 with polyamine dendrimer. Polymer Degradation and Stability, 2012, 97, 1730-1736.	2.7	16
41	Enhancement of photocatalytic degradation of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials. Water Science and Technology, 2016, 74, 1689-1697.	1.2	16
42	Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles. Journal of Thermal Analysis and Calorimetry, 2013, 112, 1507-1513.	2.0	12
43	Description of phenomenological process during thermal formation of an epoxy system in presence of metal nanoparticles using advanced kinetics analysis. Journal of Thermal Analysis and Calorimetry, 2014, 117, 53-61.	2.0	9
44	Effect of different conditions on the size and quality of titanium dioxide nanoparticles synthesized by a reflux process. Research on Chemical Intermediates, 2015, 41, 1777-1788.	1.3	9
45	Natural bauxite nanosheets: A multifunctional and sustainable 2D nano-reinforcement for high performance polymer nanocomposites. Composites Science and Technology, 2019, 184, 107868.	3.8	9
46	Multiple Hydrogen Bond Channel Structural Electrolyte for an Enhanced Carbon Fiber Composite Battery. ACS Applied Energy Materials, 2022, 5, 2054-2066.	2.5	8
47	Covalent treatment of carbon fibre with functionalized MoS2 nanosheets using thiol-ene click chemistry: The improvement of interface in multiscale epoxy composites. Composites Part B: Engineering, 2022, 236, 109821.	5.9	7
48	Characterization and Thermal Decomposition Kinetics of Poly(ethylene 2,6-naphthalate) Nanocomposites Reinforced with TiO ₂ Nanoparticles. Polymer-Plastics Technology and Engineering, 2012, 51, 43-49.	1.9	6