Yasumasa Takagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1468103/publications.pdf

Version: 2024-02-01

70	1,327	23	34
papers	citations	h-index	g-index
71	71	71	1876
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer. Nano Letters, 2017, 17, 3493-3500.	9.1	129
2	Perpendicular magnetic anisotropy at the interface between ultrathin Fe film and MgO studied by angular-dependent x-ray magnetic circular dichroism. Applied Physics Letters, 2014, 105, .	3.3	77
3	Electronic states of the clean Ge(001) surface near Fermi energy. Physical Review B, 2005, 72, .	3.2	50
4	Development of a scanning tunneling microscope forin situexperiments with a synchrotron radiation hard-X-ray microbeam. Journal of Synchrotron Radiation, 2006, 13, 216-220.	2.4	45
5	$\langle i \rangle$ In situ $\langle i \rangle$ study of an oxidation reaction on a Pt/C electrode by ambient pressure hard X-ray photoelectron spectroscopy. Applied Physics Letters, 2014, 105, .	3.3	44
6	Structure and magnetic properties of iron nitride thin films on Cu(001). Physical Review B, 2010, 81, .	3.2	42
7	In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 6013-6021.	2.8	42
8	Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions. Accounts of Chemical Research, 2018, 51, 719-727.	15.6	40
9	Origin of magnetic properties in carbon implanted ZnO nanowires. Scientific Reports, 2018, 8, 7758.	3.3	40
10	X-ray photoelectron spectroscopy under real ambient pressure conditions. Applied Physics Express, 2017, 10, 076603.	2.4	38
11	Direct Synthesis of Vanadium Phthalocyanine and Its Electronic and Magnetic States in Monolayers and Multilayers on Ag(111). Journal of Physical Chemistry C, 2015, 119, 9805-9815.	3.1	36
12	Local and Reversible Change of the Reconstruction on Ge(001) Surface betweenc($4\tilde{A}$ –2) andp($2\tilde{A}$ –2) by Scanning Tunneling Microscopy. Journal of the Physical Society of Japan, 2003, 72, 2425-2428.	1.6	34
13	Strain-induced change in electronic structure of Cu(100). Physical Review B, 2007, 75, .	3.2	34
14	Controlled Modification of Superconductivity in Epitaxial Atomic Layer–Organic Molecule Heterostructures. Nano Letters, 2017, 17, 2287-2293.	9.1	34
15	Enhancements of Spin and Orbital Magnetic Moments of Submonolayer Co on Cu(001) Studied by X-ray Magnetic Circular Dichroism Using Superconducting Magnet and Liquid He Cryostat. Japanese Journal of Applied Physics, 2008, 47, 2132.	1.5	33
16	Reversible local-modification of surface structure on clean Ge(001) by scanning tunneling microscopy below 80 K. Surface Science, 2004, 559, 1-15.	1.9	31
17	Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy. Scientific Reports, 2015, 5, 15439.	3.3	31
18	Molecular Orientation and Electronic States of Vanadyl Phthalocyanine on Si(111) and Ag(111) Surfaces. Journal of Physical Chemistry C, 2013, 117, 22843-22851.	3.1	30

#	Article	IF	CITATIONS
19	An Atomic Seesaw Switch Formed by Tilted Asymmetric Sn-Ge Dimers on a Ge (001) Surface. Science, 2007, 315, 1696-1698.	12.6	29
20	Magnetic circular dichroism for surface and thin film magnetism: Measurement techniques and surface chemical applications. International Reviews in Physical Chemistry, 2008, 27, 449-505.	2.3	27
21	Oscillations of the Orbital Magnetic Moment due to <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi></mml:math> -Band Quantum Well States. Physical Review Letters, 2014. 113. 067203.	7.8	27
22	Structural analysis of GaAs(001)-c(4×4) with LEED IV technique. Surface Science, 2001, 493, 227-231.	1.9	25
23	SPringâ€8 BL36XU: Synchrotron Radiation Xâ€Rayâ€Based Multiâ€Analytical Beamline for Polymer Electrolyte Fuel Cells under Operating Conditions. Chemical Record, 2019, 19, 1444-1456.	5 . 8	25
24	Superstructure manipulation on a clean Ge(001) surface by carrier injection using an STM. Physical Review B, 2007, 75, .	3.2	23
25	Emergence of Oxygen Reduction Activity in Zirconium Oxide-Based Compounds in Acidic Media: Creation of Active Sites for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 18150-18159.	3.1	23
26	SPring-8 BL36XU: Catalytic Reaction Dynamics for Fuel Cells. Journal of Physics: Conference Series, 2016, 712, 012142.	0.4	22
27	Thickness-dependent electronic and magnetic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>(nml:mi>(mml:mi>) www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>(nml:mi>) www.w3.org/1998/Math/MathML"><mml:mrow></mml:mrow><mml:mrow><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msu< td=""><td>o>ĝ€²<td>ıml:mo></td></td></mml:msu<></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:mrow></mml:mi></mml:msup></mml:mrow></mml:mi></mml:msup></mml:mrow></mml:math>	o>ĝ€² <td>ıml:mo></td>	ıml:mo>
28	Operando Observation of Sulfur Species Poisoning Polymer Electrolyte Fuel Cell Studied by Near Ambient Pressure Hard X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 603-611.	3.1	21
29	Rewritable nanopattern on a Ge(001) surface utilizing p($2\tilde{A}$ —2)-to-c($4\tilde{A}$ —2) transition of surface reconstruction induced by a scanning tunneling microscope. Applied Physics Letters, 2004, 84, 1925-1927.	3.3	20
30	X-ray absorption spectroscopy and magnetic circular dichroism in codeposited C60–Co films with giant tunnel magnetoresistance. Chemical Physics Letters, 2009, 470, 244-248.	2.6	19
31	Study for noise reduction in synchrotron radiation based scanning tunneling microscopy by developing insulator-coat tip. Surface Science, 2007, 601, 5294-5299.	1.9	18
32	Magnetic Interactions of Vanadyl Phthalocyanine with Ferromagnetic Iron, Cobalt, and Nickel Surfaces. Journal of Physical Chemistry C, 2014, 118, 17633-17637.	3.1	17
33	Sulfur poisoning of Pt and PtCo anode and cathode catalysts in polymer electrolyte fuel cells studied by <i>operando</i> near ambient pressure hard X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 3866-3873.	2.8	15
34	Investigating Orbital Magnetic Moments in Spinel-Type MnV ₂ O ₄ Using X-ray Magnetic Circular Dichroism. Journal of the Physical Society of Japan, 2015, 84, 104703.	1.6	14
35	Non-contact electric potential measurements of electrode components in an operating polymer electrolyte fuel cell by near ambient pressure XPS. Physical Chemistry Chemical Physics, 2017, 19, 30798-30803.	2.8	14
36	Nanoscale elemental identification by synchrotronâ€radiationâ€based scanning tunneling microscopy. Surface and Interface Analysis, 2008, 40, 1033-1036.	1.8	12

#	ARTICLE process and magnetic properties of iron nanoparticles deposited on Sikmml:math	IF	CITATIONS
	ARTICLE process and magnetic properties of iron nanoparticles deposited on Sixmml:math xmins:mmi="http://www.w3.org/1998/Math/Math/Mith/Mith/Mith/Mith/Mith/Mith/Mith/Mi		
37	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub>		

#	Article	IF	CITATIONS
55	Giant magnetic anisotropy energy and coercivity in Fe island and atomic wire on $W(110)$. Physical Review B, 2012, 86, .	3.2	4
56	STM and RHEED studies on low-temperature growth of GaAs(). Surface Science, 2002, 514, 350-355.	1.9	3
57	Magnetic circular dichroism study of ultrathin Ni films by threshold photoemission and angle resolved photoemission spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2010, 181, 164-167.	1.7	3
58	Dynamic Interface Formation in Magnetic Thin Film Heterostructures. Advanced Functional Materials, 2019, 29, 1804594.	14.9	3
59	Soft X-ray emission spectroscopy of Co nanoislands on a nitrogen-adsorbed Cu(001) surface. Surface Science, 2008, 602, L65-L68.	1.9	2
60	Surface restructuring process on a Ag/Ge(001) surface studied by photoelectron spectroscopy. Applied Surface Science, 2008, 254, 7638-7641.	6.1	1
61	Roughening Surface of Layered Manganite La0.5Sr1.5MnO4by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 2008, 47, 6456-6458.	1.5	1
62	Polarization dependent soft X-ray emission spectroscopy of cobalt nano-islands on a nitrogen-adsorbed Cu(001) surface. Journal of Electron Spectroscopy and Related Phenomena, 2010, 181, 225-228.	1.7	1
63	Status of Synchrotron Radiation X-ray-based Multi-analytical Beamline BL36XU for Fuel Cell Electrocatalysis Research at SPring-8. Synchrotron Radiation News, 2020, 33, 26-28.	0.8	1
64	Materials Science Research by Ambient Pressure X-ray Photoelectron Spectroscopy Systems at Synchrotron Radiation Facilities in Japan: Applications in Energy, Catalysis, and Sensors. Synchrotron Radiation News, 2022, 35, 19-25.	0.8	1
65	Multiple Electronic Excitation Using Scanning Tunneling Microscopy on Ge(001). Journal of the Physical Society of Japan, 2009, 78, 063601.	1.6	0
66	<i>In situ</i> Investigation of a Polymer Electrolyte Fuel Cell Electrode Using Ambient Pressure Hard X-ray Photoelectron Spectroscopy. Hyomen Kagaku, 2016, 37, 14-18.	0.0	0
67	Charge correlation in V2OPO4 probed by hard x-ray photoemission spectroscopy. Physical Review B, 2020, 101, .	3.2	0
68	Control of the Surface Superstructures on the Ge(001) Clean Surface. Hyomen Kagaku, 2005, 26, 315-321.	0.0	0
69	Development of Ambient Pressure Hard X-ray Photoelectron Spectroscopy at SPring-8. Journal of Surface Analysis (Online), 2019, 26, 158-159.	0.1	0
70	Operando Observation of a Polymer Electrolyte Fuel Cell Electrode by Ambient Pressure Hard X-ray Photoelectron Spectroscopy. Vacuum and Surface Science, 2019, 62, 33-38.	0.1	0