## Christopher R Triggle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/146794/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Metformin: An Old Drug for the Treatment of Diabetes but a New Drug for the Protection of the Endothelium. Medical Principles and Practice, 2015, 24, 401-415.                                                                             | 1.1 | 1,060     |
| 2  | A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Frontiers in Immunology, 2020, 11, 585354.                                                                                                                   | 2.2 | 384       |
| 3  | Varying Extracellular [K+]. Journal of Cardiovascular Pharmacology, 1993, 21, 423-429.                                                                                                                                                     | 0.8 | 252       |
| 4  | FGF21 Maintains Glucose Homeostasis by Mediating the Cross Talk Between Liver and Brain During<br>Prolonged Fasting. Diabetes, 2014, 63, 4064-4075.                                                                                        | 0.3 | 217       |
| 5  | Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory<br>Element-Binding Protein-2 and Induction of Adiponectin in Mice. Circulation, 2015, 131, 1861-1871.                                     | 1.6 | 217       |
| 6  | Metformin modulates hyperglycaemiaâ€induced endothelial senescence and apoptosis through<br><scp>SIRT1</scp> . British Journal of Pharmacology, 2014, 171, 523-535.                                                                        | 2.7 | 193       |
| 7  | The endothelium: influencing vascular smooth muscle in many ways. Canadian Journal of Physiology<br>and Pharmacology, 2012, 90, 713-738.                                                                                                   | 0.7 | 188       |
| 8  | Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic<br>(db/db â^'/â^') mice: role of decreased tetrahydrobiopterin bioavailability. British Journal of<br>Pharmacology, 2002, 136, 255-263. | 2.7 | 164       |
| 9  | Endothelium-derived relaxing factors: A focus on endothelium-derived hyperpolarizing factor(s).<br>Canadian Journal of Physiology and Pharmacology, 2001, 79, 443-470.                                                                     | 0.7 | 146       |
| 10 | 2-Furoyl-LIGRLO-amide: A Potent and Selective Proteinase-Activated Receptor 2 Agonist. Journal of<br>Pharmacology and Experimental Therapeutics, 2004, 309, 1124-1131.                                                                     | 1.3 | 128       |
| 11 | A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response,<br>and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiers in<br>Immunology, 2021, 12, 631139.       | 2.2 | 117       |
| 12 | Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose<br>Tissues. Cell Reports, 2019, 26, 2738-2752.e4.                                                                                     | 2.9 | 115       |
| 13 | Selective cyclo-oxygenase-2 inhibition with celecoxib elevates blood pressure and promotes leukocyte adherence. British Journal of Pharmacology, 2000, 129, 1423-1430.                                                                     | 2.7 | 112       |
| 14 | A role for nitroxyl (HNO) as an endotheliumâ€derived relaxing and hyperpolarizing factor in resistance<br>arteries. British Journal of Pharmacology, 2009, 157, 540-550.                                                                   | 2.7 | 110       |
| 15 | Vascular smooth muscle relaxation mediated by nitric oxide donors: a comparison with acetylcholine,<br>nitric oxide andnitroxyl ion. British Journal of Pharmacology, 2001, 134, 463-472.                                                  | 2.7 | 108       |
| 16 | A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances<br>Healthspan and Extends Lifespan. Frontiers in Endocrinology, 2021, 12, 718942.                                                             | 1.5 | 107       |
| 17 | Endothelial Dysfunction in Diabetes Mellitus: Possible Involvement of Endoplasmic Reticulum Stress?.<br>Experimental Diabetes Research, 2012, 2012, 1-14.                                                                                  | 3.8 | 98        |
| 18 | Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes:<br>assessing the health of the endothelium. Vascular Health and Risk Management, 2005, 1, 55-71.                                              | 1.0 | 95        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Endothelial dysfunction in the streptozotocin-induced diabetic apoE-deficient mouse. British Journal of Pharmacology, 2005, 146, 1110-1118.                                                                                        | 2.7 | 92        |
| 20 | Metformin: Is it a drug for all reasons and diseases?. Metabolism: Clinical and Experimental, 2022, 133, 155223.                                                                                                                   | 1.5 | 92        |
| 21 | The Endothelium in Health and Disease-A Target for Therapeutic Intervention Journal of Smooth<br>Muscle Research, 2003, 39, 249-267.                                                                                               | 0.7 | 90        |
| 22 | Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells. Journal of Cellular Physiology, 2007, 212, 682-689.                                                                       | 2.0 | 89        |
| 23 | Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Archiv European Journal of Physiology, 2010, 459, 977-994.                                                                                           | 1.3 | 89        |
| 24 | Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress<br>in small mesenteric arteries from diabetic (db/db) mice. British Journal of Pharmacology, 2003, 140,<br>701-706.            | 2.7 | 86        |
| 25 | Enhanced vascular reactivity of small mesenteric arteries from diabetic mice is associated with enhanced oxidative stress and cyclooxygenase products. British Journal of Pharmacology, 2005, 144, 953-960.                        | 2.7 | 84        |
| 26 | A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS.<br>Journal of the American Society of Hypertension, 2010, 4, 102-115.                                                        | 2.3 | 84        |
| 27 | Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic<br>endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascular<br>Pharmacology, 2018, 109, 56-71.            | 1.0 | 84        |
| 28 | Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular<br>endothelium. Acta Physiologica, 2017, 219, 138-151.                                                                            | 1.8 | 83        |
| 29 | Molecular Interplay between microRNA-34a and Sirtuin1 in Hyperglycemia-Mediated Impaired<br>Angiogenesis in Endothelial Cells: Effects of Metformin. Journal of Pharmacology and Experimental<br>Therapeutics, 2016, 356, 314-323. | 1.3 | 78        |
| 30 | NO/PGI2 -independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.<br>British Journal of Pharmacology, 1997, 120, 695-701.                                                                              | 2.7 | 76        |
| 31 | Multiple mechanisms of vascular smooth muscle relaxation by the activation of Proteinase-Activated<br>Receptor 2 in mouse mesenteric arterioles. British Journal of Pharmacology, 2002, 135, 155-169.                              | 2.7 | 76        |
| 32 | Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent<br>hyperpolarization and vascular tone. Canadian Journal of Physiology and Pharmacology, 2003, 81,<br>1013-1028.                          | 0.7 | 76        |
| 33 | Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in<br>endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. British Journal of<br>Pharmacology, 1998, 123, 821-832.         | 2.7 | 66        |
| 34 | COVID-19: Learning from Lessons To Guide Treatment and Prevention Interventions. MSphere, 2020, 5, .                                                                                                                               | 1.3 | 66        |
| 35 | Catalase has negligible inhibitory effects on endothelium-dependent relaxations in mouse isolated aorta and small mesenteric artery. British Journal of Pharmacology, 2003, 140, 1193-1200.                                        | 2.7 | 63        |
| 36 | Increased oxidative stress in the streptozotocin-induced diabetic apoE-deficient mouse: Changes in expression of NADPH oxidase subunits and eNOS. European Journal of Pharmacology, 2007, 561, 121-128.                            | 1.7 | 62        |

| #  | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Metformin: The Answer to Cancer in a Flower? Current Knowledge and Future Prospects of<br>Metformin as an Anti-Cancer Agent in Breast Cancer. Biomolecules, 2019, 9, 846.                                                                                                                | 1.8 | 60        |
| 38 | Vasorelaxant effects of a nitric oxide-releasing aspirin derivative in normotensive and hypertensive rats. British Journal of Pharmacology, 2001, 133, 1314-1322.                                                                                                                        | 2.7 | 58        |
| 39 | Cardiovascular impact of drugs used in the treatment of diabetes. Therapeutic Advances in Chronic Disease, 2014, 5, 245-268.                                                                                                                                                             | 1.1 | 54        |
| 40 | Dual endothelium-dependent vascular activities of proteinase-activated receptor-2-activating peptides:<br>evidence for receptor heterogeneity. British Journal of Pharmacology, 1998, 123, 1434-1440.                                                                                    | 2.7 | 52        |
| 41 | Comparison of the pharmacological properties of EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels. British Journal of Pharmacology, 2000, 130, 1983-1991.                                                                                            | 2.7 | 52        |
| 42 | Pharmacological characteristics of endothelium-derived hyperpolarizing factor-mediated relaxation of small mesenteric arteries from db/db mice. European Journal of Pharmacology, 2006, 551, 98-107.                                                                                     | 1.7 | 48        |
| 43 | Tetrahydrobiopterin improves endothelial function in human saphenous veins. Journal of Thoracic<br>and Cardiovascular Surgery, 2000, 120, 668-671.                                                                                                                                       | 0.4 | 46        |
| 44 | Endothelium-dependent contractile actions of proteinase-activated receptor-2-activating peptides in<br>human umbilical vein: release of a contracting factor via a novel receptor. British Journal of<br>Pharmacology, 1998, 125, 1445-1454.                                             | 2.7 | 44        |
| 45 | What is the future of peer review? Why is there fraud in science? Is plagiarism out of control? Why do scientists do bad things? Is it all a case of: "all that is necessary for the triumph of evil is that good men do nothing"?. Vascular Health and Risk Management, 2007, 3, 39-53. | 1.0 | 44        |
| 46 | Endothelium-Derived Hyperpolarizing Factor: Is There A Novel Chemical Mediator?. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 153-160.                                                                                                                               | 0.9 | 42        |
| 47 | Novel role for K+-dependent Na+/Ca2+ exchangers in regulation of cytoplasmic free Ca2+ and contractility in arterial smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1226-H1235.                                                           | 1.5 | 42        |
| 48 | Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions. Biochemical Pharmacology, 2015, 98, 412-421.                                                                                               | 2.0 | 40        |
| 49 | Involvement of nitrosothiols, nitric oxide and voltage-gated K+ channels in photorelaxation of vascular smooth muscle. European Journal of Pharmacology, 1998, 347, 215-221.                                                                                                             | 1.7 | 38        |
| 50 | Widespread vascular production of C-reactive protein (CRP) and a relationship between serum CRP, plaque CRP and intimal hypertrophy. Atherosclerosis, 2007, 191, 175-181.                                                                                                                | 0.4 | 37        |
| 51 | Proteinase-Activated Receptor-2 (PAR2): Vascular Effects of a PAR2-Derived Activating Peptide via a<br>Receptor Different than PAR2. Journal of Pharmacology and Experimental Therapeutics, 2002, 303,<br>985-992.                                                                       | 1.3 | 36        |
| 52 | Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease.<br>Canadian Journal of Physiology and Pharmacology, 2020, 98, 415-430.                                                                                                                  | 0.7 | 36        |
| 53 | Antihypertensive properties of a nitric oxide-releasing naproxen derivative in two-kidney, one-clip<br>rats. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H528-H535.                                                                                    | 1.5 | 35        |
| 54 | Hyperpolarization of murine small caliber mesenteric arteries by activation of endothelial proteinase-activated receptor 2. Canadian Journal of Physiology and Pharmacology, 2004, 82, 1103-1112.                                                                                        | 0.7 | 35        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cyclic GMP-dependent and cyclic GMP-independent actions of nitric oxide on the renal afferent arteriole. British Journal of Pharmacology, 1998, 125, 563-569.                                                                                                                                                                                                                                        | 2.7 | 34        |
| 56 | Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochemical Pharmacology, 2017, 132, 118-132.                                                                                                                                                                                                                         | 2.0 | 34        |
| 57 | Interactions of nitric oxide synthase inhibitors and dexamethasone with αâ€adrenoceptorâ€mediated responses in rat aorta. British Journal of Pharmacology, 1993, 109, 495-501.                                                                                                                                                                                                                       | 2.7 | 33        |
| 58 | The effects of perfusion rate and N <sup>G</sup> â€nitroâ€Lâ€arginine methyl ester on cirazoline―and<br>KClâ€induced responses in the perfused mesenteric arterial bed of rats. British Journal of<br>Pharmacology, 1994, 111, 13-20.                                                                                                                                                                | 2.7 | 32        |
| 59 | Effects of a Western diet versus high glucose on endothelium-dependent relaxation in murine micro-<br>and macro-vasculature. European Journal of Pharmacology, 2008, 601, 111-117.                                                                                                                                                                                                                   | 1.7 | 31        |
| 60 | MicroRNA Signature and Cardiovascular Dysfunction. Journal of Cardiovascular Pharmacology, 2015, 65, 419-429.                                                                                                                                                                                                                                                                                        | 0.8 | 31        |
| 61 | Mechanism of bile salt vasoactivity: dependence on calcium channels in vascular smooth muscle.<br>British Journal of Pharmacology, 1994, 112, 1209-1215.                                                                                                                                                                                                                                             | 2.7 | 30        |
| 62 | A photosensitive vascular smooth muscle store of nitric oxide in mouse aorta: no dependence on expression of endothelial nitric oxide synthase. British Journal of Pharmacology, 2003, 138, 932-940.                                                                                                                                                                                                 | 2.7 | 28        |
| 63 | The endothelium in health and disease: A discussion of the contribution of non-nitric oxide endothelium-derived vasoactive mediators to vascular homeostasis in normal vessels and in type II diabetes. Molecular and Cellular Biochemistry, 2004, 263, 21-27.                                                                                                                                       | 1.4 | 27        |
| 64 | NO and the vasculature: where does it come from and what does it do?. Heart Failure Reviews, 2002, 7, 423-445.                                                                                                                                                                                                                                                                                       | 1.7 | 26        |
| 65 | Twenty-five years since the discovery of endothelium-derived relaxing factor (EDRF): does a<br>dysfunctional endothelium contribute to the development of type 2 diabetes?. Canadian Journal of<br>Physiology and Pharmacology, 2005, 83, 681-700.                                                                                                                                                   | 0.7 | 26        |
| 66 | The endothelium in compliance and resistance vessels. Frontiers in Bioscience - Scholar, 2011, S3, 730-744.                                                                                                                                                                                                                                                                                          | 0.8 | 25        |
| 67 | Nitrosothiol stores in vascular tissue: Modulation by ultraviolet light, acetylcholine and ionomycin.<br>European Journal of Pharmacology, 2007, 560, 183-192.                                                                                                                                                                                                                                       | 1.7 | 24        |
| 68 | Effects of oxidative and thermal stresses on stress granule formation in human induced pluripotent stem cells. PLoS ONE, 2017, 12, e0182059.                                                                                                                                                                                                                                                         | 1.1 | 24        |
| 69 | Vascular dysfunction in type 2 diabetic TallyHo mice: role for an increase in the contribution of PGH2/TxA2 receptor activation and cytochrome p450 productsThis paper is one of a selection of papers published in this Special Issue, entitled The Cellular and Molecular Basis of Cardiovascular Dysfunction, Dhalla 70th Birthday Tribute Canadian Journal of Physiology and Pharmacology, 2007, | 0.7 | 23        |
| 70 | No. 400–622<br>Minimizing Hyperglycemia-Induced Vascular Endothelial Dysfunction by Inhibiting Endothelial<br>Sodium-Glucose Cotransporter 2 and Attenuating Oxidative Stress: Implications for Treating<br>Individuals With Type 2 Diabetes. Canadian Journal of Diabetes, 2019, 43, 510-514.                                                                                                       | 0.4 | 23        |
| 71 | Novel endothelium-derived relaxing factors. Journal of Pharmacological and Toxicological Methods, 2000, 44, 441-452.                                                                                                                                                                                                                                                                                 | 0.3 | 22        |
| 72 | Endotheliumâ€dependent Vasodilation in Myogenically Active Mouse Skeletal Muscle Arterioles: Role of EDH and K <sup>+</sup> Channels. Microcirculation, 2009, 16, 377-390.                                                                                                                                                                                                                           | 1.0 | 22        |

5

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Treatment with a Combination of Metformin and 2-Deoxyglucose Upregulates Thrombospondin-1 in<br>Microvascular Endothelial Cells: Implications in Anti-Angiogenic Cancer Therapy. Cancers, 2019, 11,<br>1737.                                 | 1.7 | 21        |
| 74 | Endothelial dysfunction in Type 2 diabetes correlates with deregulated expression of the<br>tail-anchored membrane protein SLMAP. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2005, 289, H206-H211.                | 1.5 | 20        |
| 75 | The vascular endothelium in diabetes: a practical target fordrug treatment?. Expert Opinion on<br>Therapeutic Targets, 2005, 9, 101-117.                                                                                                     | 1.5 | 20        |
| 76 | 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Frontiers in<br>Cardiovascular Medicine, 2022, 9, 847554.                                                                                                | 1.1 | 20        |
| 77 | COVID-19 Vaccines and Hyperglycemia—Is There a Need for Postvaccination Surveillance?. Vaccines, 2022, 10, 454.                                                                                                                              | 2.1 | 20        |
| 78 | The effects of α-adrenoceptor agonists on intracellular Ca2+ levels in freshly dispersed single smooth<br>muscle cells from rat tail artery. British Journal of Pharmacology, 1993, 109, 1272-1275.                                          | 2.7 | 18        |
| 79 | Calcium-activated potassium channel and connexin expression in small mesenteric arteries from<br>eNOS-deficient (eNOSâ°'/â^') and eNOS-expressing (eNOS+/+) mice. European Journal of Pharmacology,<br>2007, 560, 193-200.                   | 1.7 | 17        |
| 80 | Perivascular adipose tissue-derived relaxing factors: release by peptide agonists via<br>proteinase-activated receptor-2 (PAR2) and non-PAR2 mechanisms. British Journal of Pharmacology,<br>2011, 164, 1990-2002.                           | 2.7 | 17        |
| 81 | Metformin Prevents Hyperglycemia-Associated, Oxidative Stress-Induced Vascular Endothelial<br>Dysfunction: Essential Role for the Orphan Nuclear Receptor Human Nuclear Receptor 4A1 (Nur77).<br>Molecular Pharmacology, 2021, 100, 428-455. | 1.0 | 17        |
| 82 | From Gutenberg to Open Science: An Unfulfilled Odyssey. Drug Development Research, 2017, 78, 3-23.                                                                                                                                           | 1.4 | 16        |
| 83 | Hyperglycaemia disrupts conducted vasodilation in the resistance vasculature of db/db mice. Vascular Pharmacology, 2018, 103-105, 29-35.                                                                                                     | 1.0 | 15        |
| 84 | Potent and PPARα-independent anti-proliferative action of the hypolipidemic drug fenofibrate in<br>VEGF-dependent angiosarcomas in vitro. Scientific Reports, 2019, 9, 6316.                                                                 | 1.6 | 15        |
| 85 | Augmentation of endothelial function by endothelin antagonism in human saphenous vein conduits.<br>Journal of Neurosurgery, 2001, 94, 281-286.                                                                                               | 0.9 | 13        |
| 86 | Nitric oxide, a possible mediator of 1,4â€dihydropyridineâ€induced photorelaxation of vascular smooth<br>muscle. British Journal of Pharmacology, 1996, 118, 879-884.                                                                        | 2.7 | 12        |
| 87 | Endothelin blockade potentiates endothelial protective effects of ace inhibitors in saphenous veins.<br>Annals of Thoracic Surgery, 2002, 73, 1185-1188.                                                                                     | 0.7 | 12        |
| 88 | Defying the economists: a decrease in heart rate improves not only cardiac but also endothelial function. British Journal of Pharmacology, 2008, 154, 727-728.                                                                               | 2.7 | 12        |
| 89 | Endothelial cell dysfunction in type I and II diabetes: The cellular basis for dysfunction. Drug<br>Development Research, 2003, 58, 28-41.                                                                                                   | 1.4 | 11        |
| 90 | Requiem for impact factors and high publication charges. Accountability in Research, 2022, 29, 133-164.                                                                                                                                      | 1.6 | 11        |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The early effects of elevated glucose on endothelial function as a target in the treatment of type 2 diabetes. Drugs of Today, 2007, 43, 815.                                                                                                                       | 0.7 | 11        |
| 92  | The endothelium in health and disease: a discussion of the contribution of non-nitric oxide<br>endothelium-derived vasoactive mediators to vascular homeostasis in normal vessels and in type II<br>diabetes. Molecular and Cellular Biochemistry, 2004, 263, 21-7. | 1.4 | 11        |
| 93  | Proteinaseâ€activated receptors 1 and 2 and the regulation of porcine coronary artery contractility: a role for distinct tyrosine kinase pathways. British Journal of Pharmacology, 2014, 171, 2413-2425.                                                           | 2.7 | 10        |
| 94  | A Nonthiazolidinedione Peroxisome Proliferator-Activated Receptor Î <sup>3</sup> Agonist Reverses Endothelial<br>Dysfunction in Diabetic (db/db-/-) Mice. Journal of Pharmacology and Experimental Therapeutics, 2006,<br>316, 364-370.                             | 1.3 | 9         |
| 95  | Novel Hantzsch 1,4-dihydropyridines to study the structure-function relationships of calcium channels and photoinduced relaxation. Drug Development Research, 1997, 42, 120-130.                                                                                    | 1.4 | 8         |
| 96  | Impact of currently used anti-diabetic drugs on myoendothelial communication. Current Opinion in Pharmacology, 2019, 45, 1-7.                                                                                                                                       | 1.7 | 8         |
| 97  | Cardiovascular effects of CPU-23, a novel L-type calcium channel blocker with a unique molecular structure. British Journal of Pharmacology, 1997, 122, 1271-1278.                                                                                                  | 2.7 | 7         |
| 98  | Matching Drug Metabolites from Non-Targeted Metabolomics to Self-Reported Medication in the Qatar Biobank Study. Metabolites, 2022, 12, 249.                                                                                                                        | 1.3 | 7         |
| 99  | Lack of involvement of endothelin-1 in angiotensin II-induced contraction of the isolated rat tail artery. British Journal of Pharmacology, 2000, 131, 1055-1064.                                                                                                   | 2.7 | 6         |
| 100 | Cytochrome P450 Products and Arachidonic Acid–Induced, Non–Store-Operated, Ca2+Entry in<br>Cultured Bovine Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 2005, 12, 153-161.                                                                 | 1.7 | 6         |
| 101 | Challenges in the Biomedical Research Enterprise in the 21st century: Antecedents in the writings of<br>David Triggle. Biochemical Pharmacology, 2015, 98, 342-359.                                                                                                 | 2.0 | 6         |
| 102 | Peroxynitrite Biology. , 2014, , 207-242.                                                                                                                                                                                                                           |     | 6         |
| 103 | The early effects of elevated glucose on endothelial function as a target in the treatment of type 2 diabetes. Timely Topics in Medicine Cardiovascular Diseases [electronic Resource], 2008, 12, E3.                                                               | 0.1 | 5         |
| 104 | Photosensitization of oesophageal smooth muscle by 3â€NO <sup>2â€</sup> 1,4â€dihydropyridines: evidence<br>for two cyclic GMPâ€dependent effector pathways. British Journal of Pharmacology, 1995, 116, 3293-3301.                                                  | 2.7 | 4         |
| 105 | The answer is not 42. Biochemical Pharmacology, 2015, 98, 327-334.                                                                                                                                                                                                  | 2.0 | 4         |
| 106 | Calcium antagonizes the magnesiumâ€induced high affinity state of the hepatic vasopressin receptor for<br>the agonist interaction. British Journal of Pharmacology, 1990, 100, 5-10.                                                                                | 2.7 | 3         |
| 107 | Contribution of EDHF and the role of potassium channels in the regulation of vascular tone. Drug Development Research, 2003, 58, 81-89.                                                                                                                             | 1.4 | 3         |
| 108 | Pain control: What a pain!. Drug Development Research, 2001, 54, 117-117.                                                                                                                                                                                           | 1.4 | 2         |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Searching for the physiological role and therapeutic potential of vascular proteinase-activated receptor-2 (PAR2). Drug Development Research, 2003, 60, 14-19.                                                          | 1.4 | 2         |
| 110 | Cardiovascular Pharmacology of CPU-23: A Novel Calcium Channel Blocker. Cardiovascular Drug<br>Reviews, 1996, 14, 364-379.                                                                                              | 4.4 | 1         |
| 111 | The Contribution of d-Tubocurarine–sensitive and Apamin-sensitive K-channels to EDHF-mediated<br>Relaxation of Mesenteric Arteries From eNOSâ^'/â^' Mice. Journal of Cardiovascular Pharmacology, 2012,<br>59, 413-425. | 0.8 | 1         |
| 112 | Endothelial Cell K+ Channels, Membrane Potential and the Release of Vasoactive Factors from the Vascular Endothelium. , 2001, , 667-689.                                                                                |     | 1         |
| 113 | Biomedical Research in Canada. Drug Development Research, 1997, 42, 111-112.                                                                                                                                            | 1.4 | 0         |
| 114 | Hyperglycaemic Impairment of PAR2-Mediated Vasodilatation: Prevention by Inhibition of SGLT2 and Minimizing Mitochondrial Dysfunction. Atherosclerosis Supplements, 2018, 32, 137.                                      | 1.2 | 0         |
| 115 | Endothelium-Derived Hyperpolarizing Factor(s). Does it Exist and What Role Does it Play in the Regulation of Blood Flow?. Progress in Experimental Cardiology, 2004, , 341-348.                                         | 0.0 | 0         |
| 116 | Proteinaseâ€activated receptors, PAR1 & PAR2, regulate porcine coronary contractility via tyrosine<br>kinaseâ€MAPKinase signaling involving a cyclooxygenase (COX)â€1 product. FASEB Journal, 2013, 27, 880.2.          | 0.2 | 0         |
| 117 | Metformin modulates hyperglycemiaâ€induced endothelial dysfunction through SIRT1. FASEB Journal,<br>2013, 27, lb612.                                                                                                    | 0.2 | 0         |
| 118 | Inhibition of the Akt Kinase Down-regulates ERK, Bcl-2 and Survivin and Suppresses Proliferation and Survival of Murine VEGF-dependent Angiosarcoma Cells. , 2016, , .                                                  |     | 0         |
| 119 | Metformin Mediated Inhibition of the mTOR Pathway Promotes Death in Glucose Starved Micro-Vascular Endothelial Cells. , 2016, , .                                                                                       |     | 0         |
| 120 | Comparative Expression Profile of Organic Cation Transporters in Diabetes and Cancer: Effects of Metformin. , 2016, , .                                                                                                 |     | 0         |
| 121 | Stress Granules as a possible regulator of pluripotent stem cell self renewal and differentaition. , 2018, , .                                                                                                          |     | 0         |