Marino Gatto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467915/publications.pdf Version: 2024-02-01

Μλρινίο Ολττο

#	Article	IF	CITATIONS
1	Deep Learning Segmentation of Satellite Imagery Identifies Aquatic Vegetation Associated with Snail Intermediate Hosts of Schistosomiasis in Senegal, Africa. Remote Sensing, 2022, 14, 1345.	4.0	11
2	Epidemicity of cholera spread and the fate of infection control measures. Journal of the Royal Society Interface, 2022, 19, 20210844.	3.4	1
3	Optimal control of the spatial allocation of COVID-19 vaccines: Italy as a case study. PLoS Computational Biology, 2022, 18, e1010237.	3.2	19
4	Range of reproduction number estimates for COVID-19 spread. Biochemical and Biophysical Research Communications, 2021, 538, 253-258.	2.1	13
5	The epidemicity index of recurrent SARS-CoV-2 infections. Nature Communications, 2021, 12, 2752.	12.8	8
6	Identification of Ecological Hotspots for the Seagrass Posidonia oceanica via Metapopulation Modeling. Frontiers in Marine Science, 2021, 8, .	2.5	3
7	Species. , 2020, , 47-113.		0
8	Populations. , 2020, , 114-224.		0
9	Waterborne Disease. , 2020, , 225-339.		0
10	Afterthoughts and Outlook. , 2020, , 340-361.		0
11	The geography of COVID-19 spread in Italy and implications for the relaxation of confinement measures. Nature Communications, 2020, 11, 4264.	12.8	110
12	Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10484-10491.	7.1	878
13	Extending full protection inside existing marine protected areas, or reducing fishing effort outside, can reconcile conservation and fisheries goals. Journal of Applied Ecology, 2020, 57, 1948-1957.	4.0	7
14	Spatial patterns and temporal variability of seagrass connectivity in the Mediterranean Sea. Diversity and Distributions, 2020, 26, 169-182.	4.1	10
15	Protection reveals density-dependent dynamics in fish populations: A case study in the central Mediterranean. PLoS ONE, 2020, 15, e0228604.	2.5	5
16	Within-host mechanisms of immune regulation explain the contrasting dynamics of two helminth species in both single and dual infections. PLoS Computational Biology, 2020, 16, e1008438.	3.2	8
17	Modelled effects of prawn aquaculture on poverty alleviation and schistosomiasis control. Nature Sustainability, 2019, 2, 611-620.	23.7	32
18	A demographic model for the conservation and management of the European eel: an application to a Mediterranean coastal lagoon. ICES Journal of Marine Science, 2019, , .	2.5	10

#	Article	IF	CITATIONS
19	Conditions for transient epidemics of waterborne disease in spatially explicit systems. Royal Society Open Science, 2019, 6, 181517.	2.4	23
20	Epidemicity thresholds for water-borne and water-related diseases. Journal of Theoretical Biology, 2018, 447, 126-138.	1.7	22
21	Spread of proliferative kidney disease in fish along stream networks: A spatial metacommunity framework. Freshwater Biology, 2018, 63, 114-127.	2.4	37
22	River networks as ecological corridors: A coherent ecohydrological perspective. Advances in Water Resources, 2018, 112, 27-58.	3.8	58
23	Assessing the effectiveness of a large marine protected area for reef shark conservation. Biological Conservation, 2017, 207, 64-71.	4.1	109
24	Modeling Key Drivers of Cholera Transmission Dynamics Provides New Perspectives for Parasitology. Trends in Parasitology, 2017, 33, 587-599.	3.3	22
25	A generalized definition of reactivity for ecological systems and the problem of transient species dynamics. Methods in Ecology and Evolution, 2017, 8, 1574-1584.	5.2	28
26	Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis. Scientific Reports, 2017, 7, 489.	3.3	58
27	Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11992-11997.	7.1	60
28	Heterogeneity in schistosomiasis transmission dynamics. Journal of Theoretical Biology, 2017, 432, 87-99.	1.7	40
29	The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis region, Senegal. Advances in Water Resources, 2017, 108, 406-415.	3.8	45
30	Understanding large-scale, long-term larval connectivity patterns: The case of the Northern Line Islands in the Central Pacific Ocean. PLoS ONE, 2017, 12, e0182681.	2.5	1
31	On the probability of extinction of the Haiti cholera epidemic. Stochastic Environmental Research and Risk Assessment, 2016, 30, 2043-2055.	4.0	41
32	Body size and meta-community structure: the allometric scaling of parasitic worm communities in their mammalian hosts. Parasitology, 2016, 143, 880-893.	1.5	8
33	An epidemiological model for proliferative kidney disease in salmonid populations. Parasites and Vectors, 2016, 9, 487.	2.5	32
34	Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6427-6432.	7.1	61
35	Looking for hotspots of marine metacommunity connectivity: a methodological framework. Scientific Reports, 2016, 6, 23705.	3.3	58
36	Detection ofVibrio choleraeO1 and O139 in environmental waters of rural Bangladesh: a flow-cytometry-based field trial. Epidemiology and Infection, 2015, 143, 2330-2342.	2.1	6

#	Article	IF	CITATIONS
37	A global viability assessment of the European eel. Global Change Biology, 2015, 21, 3323-3335.	9.5	36
38	A Theoretical Analysis of the Geography of Schistosomiasis in Burkina Faso Highlights the Roles of Human Mobility and Water Resources Development in Disease Transmission. PLoS Neglected Tropical Diseases, 2015, 9, e0004127.	3.0	34
39	On the predictive ability of mechanistic models for the Haitian cholera epidemic. Journal of the Royal Society Interface, 2015, 12, 20140840.	3.4	25
40	The temporal patterns of disease severity and prevalence in schistosomiasis. Chaos, 2015, 25, 036405.	2.5	13
41	A user-friendly tool to assess management plans for European eel fishery and conservation. Environmental Modelling and Software, 2015, 64, 9-17.	4.5	14
42	MODELLI SPAZIO-TEMPORALI DI DIFFUSIONE, PREVISIONE E CONTROLLO DELLE EPIDEMIE DI COLERA: DAL SUDAFRICA AD HAITI. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2014, , .	0.0	0
43	Cholera in the Lake Kivu region (DRC): Integrating remote sensing and spatially explicit epidemiological modeling. Water Resources Research, 2014, 50, 5624-5637.	4.2	27
44	Glucose- but Not Rice-Based Oral Rehydration Therapy Enhances the Production of Virulence Determinants in the Human Pathogen Vibrio cholerae. PLoS Neglected Tropical Diseases, 2014, 8, e3347.	3.0	34
45	Metapopulation persistence and species spread in river networks. Ecology Letters, 2014, 17, 426-434.	6.4	113
46	Floquet theory for seasonal environmental forcing of spatially explicit waterborne epidemics. Theoretical Ecology, 2014, 7, 351-365.	1.0	33
47	Light and hydrologic variability as drivers of stream biofilm dynamics in a flume experiment. Ecohydrology, 2014, 7, 391-400.	2.4	5
48	Understanding the effectiveness of marine protected areas using genetic connectivity patterns and Lagrangian simulations. Diversity and Distributions, 2013, 19, 1531-1542.	4.1	74
49	Rainfall mediations in the spreading of epidemic cholera. Advances in Water Resources, 2013, 60, 34-46.	3.8	17
50	Optimisation of combustion bioenergy in a farming district under different localisation strategies. Biomass and Bioenergy, 2013, 58, 20-30.	5.7	13
51	Spatially Explicit Conditions for Waterborne Pathogen Invasion. American Naturalist, 2013, 182, 328-346.	2.1	37
52	Integrating field data into individual-based models of the migration of European eel larvae. Marine Ecology - Progress Series, 2013, 487, 135-149.	1.9	31
53	Modelling cholera epidemics: the role of waterways, human mobility and sanitation. Journal of the Royal Society Interface, 2012, 9, 376-388.	3.4	143
54	Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6602-6607.	7.1	153

#	Article	IF	CITATIONS
55	Sex―and ageâ€structured models for Alpine ibex <i>Capra ibex ibex</i> population dynamics. Wildlife Biology, 2012, 18, 318-332.	1.4	19
56	Generalized reproduction numbers and the prediction of patterns in waterborne disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19703-19708.	7.1	76
57	Assessing Dispersal Patterns of Fish Propagules from an Effective Mediterranean Marine Protected Area. PLoS ONE, 2012, 7, e52108.	2.5	54
58	A bootstrap approach to account for uncertainty in egg production methods applied to small fish stocks. Fisheries Research, 2012, 117-118, 130-136.	1.7	6
59	Hydroclimatology of dualâ€peak annual cholera incidence: Insights from a spatially explicit model. Geophysical Research Letters, 2012, 39, .	4.0	27
60	The role of aquatic reservoir fluctuations in long-term cholera patterns. Epidemics, 2012, 4, 33-42.	3.0	25
61	On the role of human mobility in the spread of cholera epidemics: towards an epidemiological movement ecology. Ecohydrology, 2012, 5, 531-540.	2.4	21
62	Hydrologic controls and anthropogenic drivers of the zebra mussel invasion of the Mississippiâ€Missouri river system. Water Resources Research, 2011, 47, .	4.2	38
63	Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	82
64	Erratum to "Body growth and mortality of the spiny lobster Palinurus elephas within and outside a small marine protected area―[Fish. Res. 106 (2010) 543–549]. Fisheries Research, 2011, 108, 404.	1.7	0
65	A Transmission Model of the 2010 Cholera Epidemic in Haiti. Annals of Internal Medicine, 2011, 155, 403.	3.9	7
66	Intra-specific scaling of natural mortality in fish: the paradigmatic case of the European eel. Oecologia, 2011, 165, 333-339.	2.0	46
67	Modelling human movement in cholera spreading along fluvial systems. Ecohydrology, 2011, 4, 49-55.	2.4	20
68	On spatially explicit models of cholera epidemics. Journal of the Royal Society Interface, 2010, 7, 321-333.	3.4	166
69	Body growth and mortality of the spiny lobster Palinurus elephas within and outside a small marine protected area. Fisheries Research, 2010, 106, 543-549.	1.7	15
70	Central-place seed foraging and vegetation patterns. Theoretical Population Biology, 2009, 76, 229-240.	1.1	4
71	When will the zebra mussel reach Florence? A model for the spread of <i>Dreissena polymorpha</i> in the Arno water system (Italy). Ecohydrology, 2009, 2, 428-439.	2.4	16
72	Size selectivity of fyke nets for European eel <i>Anguilla anguilla</i> . Journal of Fish Biology, 2009, 74, 2178-2186.	1.6	27

#	Article	IF	CITATIONS
73	On Volterra and D'Ancona's footsteps: The temporal and spatial complexity of ecological interactions and networks1. Italian Journal of Zoology, 2009, 76, 3-15.	0.6	10
74	Body-size scaling in an SEI model of wildlife diseases. Theoretical Population Biology, 2008, 73, 374-382.	1.1	20
75	Movement Strategies of Seed Predators as Determinants of Plant Recruitment Patterns. American Naturalist, 2008, 172, 694-711.	2.1	22
76	Allometric Scaling and Seasonality in the Epidemics of Wildlife Diseases. American Naturalist, 2008, 172, 818-828.	2.1	31
77	On the spaceâ€ŧime evolution of a cholera epidemic. Water Resources Research, 2008, 44, .	4.2	111
78	Local resource competition and the skewness of the sex ratio: a demographic model. Mathematical Biosciences and Engineering, 2008, 5, 813-830.	1.9	4
79	Multi-objective assessment of conservation measures for the European eel (Anguilla anguilla): an application to the Camargue lagoons. ICES Journal of Marine Science, 2007, 64, 1483-1490.	2.5	44
80	River networks and ecological corridors: Reactive transport on fractals, migration fronts, hydrochory. Water Resources Research, 2007, 43, .	4.2	46
81	Structural risk minimization: a robust method for densityâ€dependence detection and model selection. Ecography, 2007, 30, 400-416.	4.5	25
82	Modelling the local dynamics of the zebra mussel (Dreissena polymorpha). Freshwater Biology, 2007, 52, 1223-1238.	2.4	41
83	Sex differentiation of the European eel in brackish and freshwater environments: a comparative analysis. Journal of Fish Biology, 2006, 69, 1228-1235.	1.6	52
84	Timing and rate of sexual maturation of European eel in brackish and freshwater environments. Journal of Fish Biology, 2006, 69, 200-208.	1.6	42
85	Age and growth of Anguilla anguilla in the Camargue lagoons. Journal of Fish Biology, 2006, 68, 876-890.	1.6	63
86	VC-dimension and structural risk minimization for the analysis of nonlinear ecological models. Applied Mathematics and Computation, 2006, 176, 166-176.	2.2	9
87	The intermediate dispersal principle in spatially explicit metapopulations. Journal of Theoretical Biology, 2006, 239, 22-32.	1.7	23
88	Model selection in demographic time series using VC-bounds. Ecological Modelling, 2006, 191, 186-195.	2.5	5
89	A stochastic bioeconomic model for the management of clam farming. Ecological Modelling, 2005, 184, 163-174.	2.5	38
90	The decline of the grey partridge in Europe: comparing demographies in traditional and modern agricultural landscapes. Ecological Modelling, 2004, 177, 313-335.	2.5	30

#	Article	IF	CITATIONS
91	Density and temperature-dependence of vital rates in the Manila clam Tapes philippinarum: a stochastic demographic model. Marine Ecology - Progress Series, 2004, 272, 153-164.	1.9	35
92	Is the rock partridge Alectoris graeca saxatilis threatened in the Dolomitic Alps?. Animal Conservation, 2003, 6, 71-81.	2.9	6
93	Assessing the Potential Impact of Clam Rearing in Dystrophic Lagoons: An Integrated Oxygen Balance. Chemistry and Ecology, 2003, 19, 129-146.	1.6	20
94	Assessing The Potential Impact Of Clam Rearing In Dystrophic Lagoons: An Integrated Oxygen Balance. Chemistry and Ecology, 2003, 19, 129-146.	1.6	11
95	A Persistence Criterion for Metapopulations. Theoretical Population Biology, 2002, 61, 115-125.	1.1	39
96	Habitat Destruction, Environmental Catastrophes, and Metapopulation Extinction. Theoretical Population Biology, 2002, 61, 127-140.	1.1	45
97	Estimating Daily Egg Production of European Anchovy in the Adriatic Sea: A Critical Appraisal. Marine Ecology, 2002, 23, 272-279.	1.1	2
98	The Kyoto Protocol Is Cost-effective. Ecology and Society, 2002, 6, .	0.9	0
99	A STOCHASTIC BIOECONOMIC ANALYSIS OF SILVER EEL FISHERIES. , 2001, 11, 281-294.		19
100	The economic benefits of the Kyoto Protocol. Nature, 2001, 413, 478-479.	27.8	30
101	Response from Gatto and De Leo:. BioScience, 2001, 51, 271.	4.9	1
102	Quantifying the Dynamics of Prion Infection: a Bifurcation Analysis of Laurent's Model. Journal of Theoretical Biology, 2000, 205, 283-296.	1.7	7
103	VVF: integrating modelling and GIS in a software tool for habitat suitability assessment. Environmental Modelling and Software, 2000, 15, 1-12.	4.5	52
104	Pricing Biodiversity and Ecosystem Services: The Never-Ending Story. BioScience, 2000, 50, 347.	4.9	59
105	A mesoscale approach to extinction risk in fragmented habitats. Nature, 1999, 400, 560-562.	27.8	82
106	Spotlight needed on Italian policy. Nature, 1998, 391, 12-12.	27.8	2
107	Region-based citation bias in science. Nature, 1998, 396, 210-210.	27.8	41
108	Interspecific competition among macroparasites in a density-dependent host population. Journal of Mathematical Biology, 1998, 37, 467-490.	1.9	18

#	Article	IF	CITATIONS
109	Acidic Deposition, Plant Pests, and the Fate of Forest Ecosystems. Theoretical Population Biology, 1998, 54, 257-269.	1.1	13
110	Delayed and inverse density dependence in a chamois population of the Italian Alps. Ecography, 1997, 20, 37-47.	4.5	14
111	Optimal life strategies in organisms exposed to recurrent critical events. Journal of Optimization Theory and Applications, 1996, 90, 79-94.	1.5	1
112	Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or Chaotic Populations. Theoretical Population Biology, 1995, 48, 126-171.	1.1	142
113	The Interaction between Soil Acidity and Forest Dynamics: A Simple-Model Exhibiting Catastrophic Behavior. Theoretical Population Biology, 1993, 43, 31-51.	1.1	13
114	The Evolutionary Optimality of Oscillatory and Chaotic Dynamics in Simple Population Models. Theoretical Population Biology, 1993, 43, 310-336.	1.1	47
115	Taxing overexploited open-access fisheries: the role of demand elasticity. Ecological Modelling, 1992, 60, 185-198.	2.5	3
116	Assessing the response of demographic parameters to density in a rotifer population. Ecological Modelling, 1992, 62, 209-232.	2.5	4
117	Optimal diffusion of a new technology when both demand and supply are nonstatic. Journal of Optimization Theory and Applications, 1992, 73, 75-87.	1.5	2
118	Some Remarks on Models of Plankton Densities in Lakes. American Naturalist, 1991, 137, 264-267.	2.1	50
119	The optimal reclamation of eutrophic water bodies. Applied Mathematics and Computation, 1991, 43, 105-115.	2.2	1
120	Optimal investment in the reclamation of eutrophic water bodies. Journal of Optimization Theory and Applications, 1991, 71, 389-398.	1.5	1
121	A review of some physiological and evolutionary aspects of body size and bud size of Hydra. Hydrobiologia, 1991, 216-217, 377-382.	2.0	9
122	A review of some physiological and evolutionary aspects of body size and bud size of Hydra. , 1991, , 377-382.		0
123	A general minimum principle for competing populations: Some ecological and evolutionary consequences. Theoretical Population Biology, 1990, 37, 369-388.	1.1	15
124	Physiological profiles and demographic rates in relation to food quantity and predictability: An optimization approach. Evolutionary Ecology, 1989, 3, 1-30.	1.2	12
125	A report on some recent experiences in developing environmental software. Ecological Modelling, 1989, 47, 19-32.	2.5	0
126	On the optimality of the logistic growth. Journal of Optimization Theory and Applications, 1988, 57, 513-517.	1.5	9

#	ARTICLE	IF	CITATIONS
127	A functional interpretation of the logistic equation. Ecological Modelling, 1988, 42, 155-159.	2.5	23
128	Some models of catastrophic behavior in exploited forests. Plant Ecology, 1987, 69, 213-222.	1.2	30
129	Does K-selection imply prudent predation?. Theoretical Population Biology, 1984, 25, 347-363.	1.1	30
130	Optimal allocation of vessels along a fish migration path. Ecological Modelling, 1982, 14, 229-250.	2.5	2
131	Some problems of effort allocation on two non-interacting fish stocks. Ecological Modelling, 1982, 14, 193-211.	2.5	1
132	Comments on "Macarthur's Minimization Principle: A Footnote". American Naturalist, 1982, 119, 140-144.	2.1	3
133	Some remarks on periodic harvesting of a fish population. Mathematical Biosciences, 1981, 56, 47-69.	1.9	14
134	A method for the real time forecast of the outflow from a lake. Applied Mathematical Modelling, 1980, 4, 322-324.	4.2	2
135	On the determination of a commercial fishery production model. Ecological Modelling, 1980, 8, 165-172.	2.5	2
136	Estimating escapements of anadromous fishes via upstream test fishing data. Ecological Modelling, 1980, 8, 173-188.	2.5	1
137	The competitive coexistence of two species in periodically varying environments. Bollettino Di Zoologia, 1979, 46, 191-200.	0.3	1
138	The regulator theory for finite automata. Information and Control, 1976, 31, 1-16.	1.1	15
139	A predator—prey model for discrete-time commercial fisheries. Applied Mathematical Modelling, 1976, 1, 67-76.	4.2	2
140	Pseudoequilibrium in dynamical systemsâ€. International Journal of Systems Science, 1973, 4, 809-824.	5.5	9