## Marino Gatto

## List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/1467915/publications.pdf
Version: 2024-02-01


1 Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measure
Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10 $\begin{aligned} & \text { On spatially explicit models of cholera epidemics. Journal of the Royal Society Interface, 2010, 7, } \\ & \text { 321-333. }\end{aligned}$
Reassessment of the 2010ấ" 2011 Haiti cholera outbreak and rainfall-driven multiseason projections.
Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6602-6607.

Modelling cholera epidemics: the role of waterways, human mobility and sanitation. Journal of the Royal Society Interface, 2012, 9, 376-388.

Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or Chaotic Populations.
Theoretical Population Biology, 1995, 48, 126-171.

6 Metapopulation persistence and species spread in river networks. Ecology Letters, 2014, 17, 426-434.
$6.4 \quad 113$
$7 \quad$ On the spaceâ€time evolution of a cholera epidemic. Water Resources Research, 2008, 44, .
4.2

111

8 The geography of COVID-19 spread in Italy and implications for the relaxation of confinement
8 measures. Nature Communications, 2020, 11, 4264.

9 Assessing the effectiveness of a large marine protected area for reef shark conservation. Biological
Conservation, 2017, 207, 64-71.

10 A mesoscale approach to extinction risk in fragmented habitats. Nature, 1999, 400, 560-562.

Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera
11 outbreak. Geophysical Research Letters, 2011, 38, n/a-n/a.

Generalized reproduction numbers and the prediction of patterns in waterborne disease. Proceedings
12 of the National Academy of Sciences of the United States of America, 2012, 109, 19703-19708.
7.1

76

Understanding the effectiveness of marine protected areas using genetic connectivity patterns and
Lagrangian simulations. Diversity and Distributions, 2013, 19, 1531-1542.

Age and growth of Anguilla anguilla in the Camargue lagoons. Journal of Fish Biology, 2006, 68, 876-890.

Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis
15 across habitats in seasonal climates. Proceedings of the National Academy of Sciences of the United
7.1

States of America, 2016, 113, 6427-6432.
Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river.
Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11992-11997.
7.1

60
$17 \quad$ Pricing Biodiversity and Ecosystem Services: The Never-Ending Story. BioScience, 2000, 50, 347.
4.9

59

Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis. Scientific Reports,
$2017,7,489$.

River networks as ecological corridors: A coherent ecohydrological perspective. Advances in Water Resources, 2018, 112, 27-58.

Assessing Dispersal Patterns of Fish Propagules from an Effective Mediterranean Marine Protected Area. PLoS ONE, 2012, 7, e52108.

VVF: integrating modelling and GIS in a software tool for habitat suitability assessment.
Environmental Modelling and Software, 2000, 15, 1-12.

Sex differentiation of the European eel in brackish and freshwater environments: a comparative analysis. Journal of Fish Biology, 2006, 69, 1228-1235.

Some Remarks on Models of Plankton Densities in Lakes. American Naturalist, 1991, 137, 264-267.
2.1

50

## 25 The Evolutionary Optimality of Oscillatory and Chaotic Dynamics in Simple Population Models.

Theoretical Population Biology, 1993, 43, 310-336.

River networks and ecological corridors: Reactive transport on fractals, migration fronts, hydrochory. Water Resources Research, 2007, 43, .

Intra-specific scaling of natural mortality in fish: the paradigmatic case of the European eel.
Oecologia, 2011, 165, 333-339.

Habitat Destruction, Environmental Catastrophes, and Metapopulation Extinction. Theoretical
Population Biology, 2002, 61, 127-140.

The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis
region, Senegal. Advances in Water Resources, 2017, 108, 406-415.

Multi-objective assessment of conservation measures for the European eel (Anguilla anguilla): an application to the Camargue lagoons. ICES Journal of Marine Science, 2007, 64, 1483-1490.

Timing and rate of sexual maturation of European eel in brackish and freshwater environments. Journal of Fish Biology, 2006, 69, 200-208.

32 Region-based citation bias in science. Nature, 1998, 396, 210-210.
27.8

41

Modelling the local dynamics of the zebra mussel (Dreissena polymorpha). Freshwater Biology, 2007, 52, 1223-1238.

On the probability of extinction of the Haiti cholera epidemic. Stochastic Environmental Research and Risk Assessment, 2016, 30, 2043-2055.

Heterogeneity in schistosomiasis transmission dynamics. Journal of Theoretical Biology, 2017, 432,
87-99.

A Persistence Criterion for Metapopulations. Theoretical Population Biology, 2002, 61, 115-125.
1.1

39

| 41 | A global viability assessment of the European eel. Global Change Biology, 2015, 21, 3323-3335. | 9.5 | 36 |
| :---: | :---: | :---: | :---: |
| 42 | Density and temperature-dependence of vital rates in the Manila clam Tapes philippinarum: a stochastic demographic model. Marine Ecology - Progress Series, 2004, 272, 153-164. | 1.9 | 35 |
| 43 | Clucose- but Not Rice-Based Oral Rehydration Therapy Enhances the Production of Virulence Determinants in the Human Pathogen Vibrio cholerae. PLoS Neglected Tropical Diseases, 2014, 8, e3347. | 3.0 | 34 |
| 44 | A Theoretical Analysis of the Geography of Schistosomiasis in Burkina Faso Highlights the Roles of Human Mobility and Water Resources Development in Disease Transmission. PLoS Neglected Tropical Diseases, 2015, 9, e0004127. | 3.0 | 34 |
| 45 | Floquet theory for seasonal environmental forcing of spatially explicit waterborne epidemics. Theoretical Ecology, 2014, 7, 351-365. | 1.0 | 33 |

An epidemiological model for proliferative kidney disease in salmonid populations. Parasites and
2.5

32

$$
\begin{aligned}
& \text { Modelled effects of prawn aquaculture on poverty alleviation and schistosomiasis control. Nature } \\
& \text { Sustainability, 2019, 2, 611-620. }
\end{aligned}
$$

23.7 ..... 32Allometric Scaling and Seasonality in the Epidemics of Wildlife Diseases. American Naturalist, 2008,172, 818-828.
2.1

Integrating field data into individual-based models of the migration of European eel larvae. Marine
1.9

31
Ecology - Progress Series, 2013, 487, 135-149.

50 Does K-selection imply prudent predation?. Theoretical Population Biology, 1984, 25, 347-363.
1.1

30

51 Some models of catastrophic behavior in exploited forests. Plant Ecology, 1987, 69, 213-222.
1.2

30

The decline of the grey partridge in Europe: comparing demographies in traditional and modern
agricultural landscapes. Ecological Modelling, 2004, 177, 313-335.

Hydroclimatology of dualâ€peak annual cholera incidence: Insights from a spatially explicit model.
57 Cholera in the Lake Kivu region (DRC): Integrating remote sensing and spatially explicit
epidemiological modeling. Water Resources Research, 2014, 50, 5624-5637.

$58 \quad$| Structural risk minimization: a robust method for densityâ€edependence detection and model selection. |
| :--- |
| Ecography, 2007, 30, 400-416. |

63 | Conditions for transient epidemics of waterborne disease in spatially explicit systems. Royal Society |
| :--- |
| Open Science, 2019, 6, 181517. |

$64 \quad$| Movement Strategies of Seed Predators as Determinants of Plant Recruitment Patterns. American |
| :--- |
| Naturalist, 2008, 172, 694-711. |


$65 \quad$| Modeling Key Drivers of Cholera Transmission Dynamics Provides New Perspectives for Parasitology. |
| :--- |
| Trends in Parasitology, 2017, 33, 587-599. |

66 2018, 447, 126-138.

On the role of human mobility in the spread of cholera epidemics: towards an epidemiological
67 movement ecology. Ecohydrology, 2012, 5, 531-540.

Assessing the Potential Impact of Clam Rearing in Dystrophic Lagoons: An Integrated Oxygen Balance.
2.4

21

Chemistry and Ecology, 2003, 19, 129-146.
Optimal control of the spatial allocation of CO
Computational Biology, 2022, 18, e1010237. ..... 3.2 ..... 1979 Body growth and mortality of the spiny lobster Palinurus elephas within and outside a small marineprotected area. Fisheries Research, 2010, 106, 543-549.$1.7 \quad 15$
80 Some remarks on periodic harvesting of a fish population. Mathematical Biosciences, 1981, 56, 47-69.1.9
81 Delayed and inverse density dependence in a chamois population of the Italian Alps. Ecography, 1997, 20, 37-47.
A user-friendly tool to assess management plans for European eel fishery and conservation.Environmental Modelling and Software, 2015, 64, 9-17.
14
83 The Interaction between Soil Acidity and Forest Dynamics: A Simple-Model Exhibiting Catastrophic Behavior. Theoretical Population Biology, 1993, 43, 31-51.1.113
Acidic Deposition, Plant Pests, and the Fate of Forest Ecosystems. Theoretical Population Biology, ..... 1.1 ..... 13
84 1998, 54, 257-269.
5.7 ..... 13
85 Optimisation of combustion bioenergy in a farming district under different localisation strategies.
5.7 ..... 13
86 The temporal patterns of disease severity and prevalence in schistosomiasis. Chaos, 2015, 25, 036405. ..... 2.5 ..... 13Range of reproduction number estimates for COVID-19 spread. Biochemical and Biophysical Research

On Volterra and D'Ancona's footsteps: The temporal and spatial complexity of ecological interactions
and networksl. Italian Journal of Zoology, 2009, 76, 3-15.

A demographic model for the conservation and management of the European eel: an application to a Mediterranean coastal lagoon. ICES Journal of Marine Science, 2019, , .
2.5

10

Spatial patterns and temporal variability of seagrass connectivity in the Mediterranean Sea. Diversity
and Distributions, 2020, 26, 169-182.
4.1

Pseudoequilibrium in dynamical systemsâ€. International Journal of Systems Science, 1973, 4, 809-824.
5.5

On the optimality of the logistic growth. Journal of Optimization Theory and Applications, 1988, 57,
513-517.

A review of some physiological and evolutionary aspects of body size and bud size of Hydra.
Hydrobiologia, 1991, 216-217, 377-382.

VC-dimension and structural risk minimization for the analysis of nonlinear ecological models.
Applied Mathematics and Computation, 2006, 176, 166-176.

Body size and meta-community structure: the allometric scaling of parasitic worm communities in their mammalian hosts. Parasitology, 2016, 143, 880-893.

99 The epidemicity index of recurrent SARS-CoV-2 infections. Nature Communications, 2021, 12, 2752.
12.8

Within-host mechanisms of immune regulation explain the contrasting dynamics of two helminth
species in both single and dual infections. PLoS Computational Biology, 2020, 16, e1008438.
3.2

8

101 Quantifying the Dynamics of Prion Infection: a Bifurcation Analysis of Laurent's Model. Journal of
Theoretical Biology, 2000, 205, 283-296.

102 A Transmission Model of the 2010 Cholera Epidemic in Haiti. Annals of Internal Medicine, 2011, 155, 403.
3.9
1.7

Extending full protection inside existing marine protected areas, or reducing fishing effort outside,
can reconcile conservation and fisheries goals. Journal of Applied Ecology, 2020, 57, 1948-1957.

Is the rock partridge Alectoris graeca saxatilis threatened in the Dolomitic Alps?. Animal Conservation, 2003, 6, 71-81.

A bootstrap approach to account for uncertainty in egg production methods applied to small fish

Detection ofVibrio choleraeO1 and O139 in environmental waters of rural Bangladesh: a flow-cytometry-based field trial. Epidemiology and Infection, 2015, 143, 2330-2342.
2.1 6

| 109 | Protection reveals density-dependent dynamics in fish populations: A case study in the central Mediterranean. PLoS ONE, 2020, 15, e0228604. | 2.5 | 5 |
| :---: | :---: | :---: | :---: |
| 110 | Assessing the response of demographic parameters to density in a rotifer population. Ecological Modelling, 1992, 62, 209-232. | 2.5 | 4 |
| 111 | Central-place seed foraging and vegetation patterns. Theoretical Population Biology, 2009, 76, 229-240. | 1.1 | 4 |
| 112 | Local resource competition and the skewness of the sex ratio: a demographic model. Mathematical Biosciences and Engineering, 2008, 5, 813-830. | 1.9 | 4 |
| 113 | Taxing overexploited open-access fisheries: the role of demand elasticity. Ecological Modelling, 1992, 60, 185-198. | 2.5 | 3 |
| 114 | Identification of Ecological Hotspots for the Seagrass Posidonia oceanica via Metapopulation Modeling. Frontiers in Marine Science, 2021, 8, . | 2.5 | 3 |
| 115 | Comments on "Macarthur's Minimization Principle: A Footnote". American Naturalist, 1982, 119, 140-144. | 2.1 | 3 |
| 116 | A predatorâ€"prey model for discrete-time commercial fisheries. Applied Mathematical Modelling, 1976, 1,67-76. | 4.2 | 2 |
| 117 | A method for the real time forecast of the outflow from a lake. Applied Mathematical Modelling, 1980, 4, 322-324. | 4.2 | 2 |
| 118 | On the determination of a commercial fishery production model. Ecological Modelling, 1980, 8, 165-172. | 2.5 | 2 |
| 119 | Optimal allocation of vessels along a fish migration path. Ecological Modelling, 1982, 14, 229-250. | 2.5 | 2 |
| 120 | Optimal diffusion of a new technology when both demand and supply are nonstatic. Journal of Optimization Theory and Applications, 1992, 73, 75-87. | 1.5 | 2 |
| 121 | Spotlight needed on Italian policy. Nature, 1998, 391, 12-12. | 27.8 | 2 |


| 131 | Epidemicity of cholera spread and the fate of infection control measures. Journal of the Royal Society Interface, 2022, 19, 20210844. | 3.4 | 1 |
| :---: | :---: | :---: | :---: |
| 132 | A report on some recent experiences in developing environmental software. Ecological Modelling, 1989, 47, 19-32. | 2.5 | 0 |
| 133 | Erratum to â€œBody growth and mortality of the spiny lobster Palinurus elephas within and outside a small marine protected areaâ€•[Fish. Res. 106 (2010) 543â€"549]. Fisheries Research, 2011, 108, 404. | 1.7 | 0 |
| 134 | MODELLI SPAZIO-TEMPORALI DI DIFFUSIONE, PREVISIONE E CONTROLLO DELLE EPIDEMIE DI COLERA: DAL SUDAFRICA AD HAITI. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2014, , . | 0.0 | 0 |

135 Species. , 2020, , 47-113.

A review of some physiological and evolutionary aspects of body size and bud size of Hydra. , 1991, ,

