
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant immunity suppression via PHR1â€RALFâ€FERONIA shapes the root microbiome to alleviate phosphate starvation. EMBO Journal, 2022, 41, e109102.	7.8	58
2	Arabidopsis CAP1 mediates ammonium-regulated root hair growth by influencing vesicle trafficking and the cytoskeletal arrangement in root hair cells. Journal of Genetics and Genomics, 2022, 49, 986-989.	3.9	4
3	Pto Interaction Proteins: Critical Regulators in Plant Development and Stress Response. Frontiers in Plant Science, 2022, 13, 774229.	3.6	6
4	The ubiquitin–proteasome system regulates meiotic chromosome organization. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106902119.	7.1	11
5	Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis. Plant Cell, 2022, 34, 3066-3087.	6.6	30
6	Genome-wide identification and expression analysis reveals spinach brassinosteroid-signaling kinase (BSK) gene family functions in temperature stress response. BMC Genomics, 2022, 23, .	2.8	5
7	Selection and Validation of Reference Genes for RT-qPCR Analysis in Spinacia oleracea under Abiotic Stress. BioMed Research International, 2021, 2021, 1-12.	1.9	6
8	Exploring the diversity of plant proteome. Journal of Integrative Plant Biology, 2021, 63, 1197-1210.	8.5	12
9	Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1–5. BMC Plant Biology, 2021, 21, 319.	3.6	8
10	MPK3/6â€induced degradation of ARR1/10/12 promotes salt tolerance in <i>Arabidopsis</i> . EMBO Reports, 2021, 22, e52457.	4.5	37
11	Establishment of an efficient Agrobacterium-mediated genetic transformation system in halophyte Puccinellia tenuiflora. Molecular Breeding, 2021, 41, 1.	2.1	6
12	Phosphoproteomic Profiling Reveals Early Salt-Responsive Mechanisms in Two Foxtail Millet Cultivars. Frontiers in Plant Science, 2021, 12, 712257.	3.6	8
13	Differential Quantitative Requirements for NPR1 Between Basal Immunity and Systemic Acquired Resistance in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 570422.	3.6	13
14	How Plant Hormones Mediate Salt Stress Responses. Trends in Plant Science, 2020, 25, 1117-1130.	8.8	426
15	Na2CO3-responsive Photosynthetic and ROS Scavenging Mechanisms in Chloroplasts of Alkaligrass Revealed by Phosphoproteomics. Genomics, Proteomics and Bioinformatics, 2020, 18, 271-288.	6.9	10
16	Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Scientific Reports, 2020, 10, 13660.	3.3	45
17	Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin Biosynthesis in Arabidopsis. Plant Cell, 2020, 32, 2621-2638.	6.6	110
18	AtHB7/12 Regulate Root Growth in Response to Aluminum Stress. International Journal of Molecular Sciences, 2020, 21, 4080.	4.1	19

#	Article	IF	CITATIONS
19	A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance. Science China Life Sciences, 2020, 63, 1269-1282.	4.9	19
20	Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics. Antioxidants and Redox Signaling, 2020, 33, 35-57.	5.4	29
21	Myc-Miz-1 signaling promotes self-renewal of leukemia stem cells by repressing Cebpα and Cebpδ. Blood, 2020, 135, 1133-1145.	1.4	8
22	Heat-Responsive Proteomics of a Heat-Sensitive Spinach Variety. International Journal of Molecular Sciences, 2019, 20, 3872.	4.1	23
23	SpinachBase: a central portal for spinach genomics. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	30
24	Physiological and comparative proteomic analyses of saline-alkali NaHCO3-responses in leaves of halophyte Puccinellia tenuiflora. Plant and Soil, 2019, 437, 137-158.	3.7	41
25	NaCl-responsive ROS scavenging and energy supply in alkaligrass callus revealed from proteomic analysis. BMC Genomics, 2019, 20, 990.	2.8	19
26	Nitrate Accumulation and Expression Patterns of Genes Involved in Nitrate Transport and Assimilation in Spinach. Molecules, 2018, 23, 2231.	3.8	16
27	A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa. Frontiers in Plant Science, 2018, 9, 555.	3.6	77
28	Proteomics and Phosphoproteomics of Heat Stress-Responsive Mechanisms in Spinach. Frontiers in Plant Science, 2018, 9, 800.	3.6	79
29	The DNA Methylome and Association of Differentially Methylated Regions with Differential Gene Expression during Heat Stress in Brassica rapa. International Journal of Molecular Sciences, 2018, 19, 1414.	4.1	80
30	Proteomic discovery of H2O2 response in roots and functional characterization of PutGLP gene from alkaligrass. Planta, 2018, 248, 1079-1099.	3.2	18
31	Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 2017, 8, 15275.	12.8	156
32	Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells. Frontiers in Plant Science, 2017, 8, 58.	3.6	36
33	Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. Frontiers in Plant Science, 2017, 8, 810.	3.6	41
34	Hydrogen Peroxide Response in Leaves of Poplar (Populus simonii × Populus nigra) Revealed from Physiological and Proteomic Analyses. International Journal of Molecular Sciences, 2017, 18, 2085.	4.1	20
35	Heat-Responsive Photosynthetic and Signaling Pathways in Plants: Insight from Proteomics. International Journal of Molecular Sciences, 2017, 18, 2191.	4.1	51
36	Salinity Response in Chloroplasts: Insights from Gene Characterization. International Journal of Molecular Sciences, 2017, 18, 1011.	4.1	94

#	Article	IF	CITATIONS
37	Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard― Leaves. International Journal of Molecular Sciences, 2016, 17, 346.	4.1	9
38	Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. International Journal of Molecular Sciences, 2016, 17, 1706.	4.1	198
39	De novo and comparative transcriptome analysis of cultivated and wild spinach. Scientific Reports, 2016, 5, 17706.	3.3	41
40	Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis. Journal of Proteomics, 2016, 143, 365-381.	2.4	28
41	Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Scientific Reports, 2016, 6, 32717.	3.3	63
42	Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination. Frontiers in Plant Science, 2015, 6, 441.	3.6	11
43	Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. Journal of Proteomics, 2015, 126, 94-108.	2.4	22
44	Fern spore germination in response to environmental factors. Frontiers in Biology, 2015, 10, 358-376.	0.7	27
45	Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth*. Molecular and Cellular Proteomics, 2015, 14, 2510-2534.	3.8	51
46	Understanding Information Processes at the Proteomics Level. , 2014, , 57-72.		2
47	Protein Kinase LTRPK1 Influences Cold Adaptation and Microtubule Stability in Rice. Journal of Plant Growth Regulation, 2013, 32, 483-490.	5.1	30
48	Proteomics-based investigation of salt-responsive mechanisms in plant roots. Journal of Proteomics, 2013, 82, 230-253.	2.4	150
49	Proteomic insights into seed germination in response to environmental factors. Proteomics, 2013, 13, 1850-1870.	2.2	63
50	Comparative Proteomics of Peanut Gynophore Development under Dark and Mechanical Stimulation. Journal of Proteome Research, 2013, 12, 5502-5511.	3.7	16
51	Comparative Proteomic Analysis of Puccinellia tenuiflora Leaves under Na2CO3 Stress. International Journal of Molecular Sciences, 2013, 14, 1740-1762.	4.1	53
52	Integrated Proteomics and Metabolomics of Arabidopsis Acclimation to Gene-Dosage Dependent Perturbation of Isopropylmalate Dehydrogenases. PLoS ONE, 2013, 8, e57118.	2.5	24
53	Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function. Molecular and Cellular Proteomics, 2012, 11, 1622-1630.	3.8	44
54	Methyl Jasmonate Responsive Proteins in <i>Brassica napus</i> Guard Cells Revealed by iTRAQ-Based Quantitative Proteomics. Journal of Proteome Research, 2012, 11, 3728-3742.	3.7	43

#	Article	lF	CITATIONS
55	Mechanisms of Plant Salt Response: Insights from Proteomics. Journal of Proteome Research, 2012, 11, 49-67.	3.7	340
56	The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. Frontiers in Biology, 2012, 7, 96-112.	0.7	22
57	Physiological and Proteomic Analysis of Salinity Tolerance in <i>Puccinellia tenuiflora</i> . Journal of Proteome Research, 2011, 10, 3852-3870.	3.7	187
58	Proteomics characteristics of rice leaves in response to environmental factors. Frontiers in Biology, 2010, 5, 246-254.	0.7	24
59	Isobaric Tags for Relative and Absolute Quantification―based Comparative Proteomics Reveals the Features of Plasma Membraneâ€Associated Proteomes of Pollen Grains and Pollen Tubes from <i>Lilium davidii</i> . Journal of Integrative Plant Biology, 2010, 52, 1043-1058.	8.5	37
60	Comparative Proteomics of Salt Tolerance in <i>Arabidopsis thaliana</i> and <i>Thellungiella halophila</i> . Journal of Proteome Research, 2010, 9, 2584-2599.	3.7	266
61	Desiccation Tolerance Mechanism in Resurrection Fern-Ally <i>Selaginella tamariscina</i> Revealed by Physiological and Proteomic Analysis. Journal of Proteome Research, 2010, 9, 6561-6577.	3.7	116
62	Functional Differentiation of Brassica napus Guard Cells and Mesophyll Cells Revealed by Comparative Proteomics. Molecular and Cellular Proteomics, 2009, 8, 752-766.	3.8	106
63	Proteomics Identification of Differentially Expressed Proteins Associated with Pollen Germination and Tube Growth Reveals Characteristics of Germinated Oryza sativa Pollen. Molecular and Cellular Proteomics, 2007, 6, 207-230.	3.8	133
64	Proteomics of Pollen Development and Germination. Journal of Proteome Research, 2007, 6, 4556-4563.	3.7	36
65	Proteomic analyses ofOryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics, 2006, 6, 2504-2529.	2.2	165