
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467651/publications.pdf Version: 2024-02-01

FWILLONG MI

#	Article	IF	CITATIONS
1	A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of Controlled Release, 2004, 96, 285-300.	4.8	825
2	Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 2001, 22, 165-173.	5.7	633
3	In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 2002, 23, 181-191.	5.7	501
4	Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Advanced Drug Delivery Reviews, 2013, 65, 865-879.	6.6	373
5	Preparation and Characterization of Nanoparticles Shelled with Chitosan for Oral Insulin Delivery. Biomacromolecules, 2007, 8, 146-152.	2.6	319
6	Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydrate Polymers, 2002, 48, 61-72.	5.1	294
7	Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. Journal of Biomedical Materials Research Part B, 2002, 59, 438-449.	3.0	271
8	Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer, 2001, 42, 1879-1892.	1.8	256
9	Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydrate Polymers, 2004, 57, 435-440.	5.1	244
10	Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science Part A, 2005, 43, 1985-2000.	2.5	236
11	Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer, 2003, 44, 6521-6530.	1.8	228
12	Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. Journal of Polymer Science Part A, 2000, 38, 2804-2814.	2.5	205
13	The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. Journal of Controlled Release, 2010, 146, 152-159.	4.8	192
14	Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1551-1564.	2.4	185
15	Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocolloids, 2013, 30, 33-41.	5.6	178
16	In vitro evaluation of a chitosan membrane cross-linked with genipin. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 835-850.	1.9	172
17	Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. Journal of Controlled Release, 2008, 132, 141-149.	4.8	168
18	Heparin-functionalized chitosan–alginate scaffolds for controlled release of growth factor. International Journal of Pharmaceutics, 2009, 376, 69-75.	2.6	161

#	Article	IF	CITATIONS
19	Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. Journal of Membrane Science, 2003, 212, 237-254.	4.1	160
20	The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydrate Polymers, 2000, 41, 389-396.	5.1	157
21	Synthesis and Characterization of a Novel Chitosanâ^Gelatin Bioconjugate with Fluorescence Emission. Biomacromolecules, 2005, 6, 975-987.	2.6	146
22	Rapidly Self-Expandable Polymeric Stents with a Shape-Memory Property. Biomacromolecules, 2007, 8, 2774-2780.	2.6	142
23	Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydrate Polymers, 2021, 254, 117410.	5.1	141
24	Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials, 1999, 20, 1603-1612.	5.7	140
25	Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocolloids, 2017, 69, 491-502.	5.6	140
26	Enzymatic grafting of carboxyl groups on to chitosan––to confer on chitosan the property of a cationic dye adsorbent. Bioresource Technology, 2004, 91, 157-162.	4.8	139
27	Oral Delivery of Peptide Drugs Using Nanoparticles Self-Assembled by Poly(γ-glutamic acid) and a Chitosan Derivative Functionalized by Trimethylation. Bioconjugate Chemistry, 2008, 19, 1248-1255.	1.8	137
28	Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials, 2003, 24, 5023-5036.	5.7	129
29	Heparinized chitosan/poly(γ-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials, 2010, 31, 9320-9332.	5.7	125
30	Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydrate Polymers, 2017, 165, 410-420.	5.1	122
31	Novel Living Cell Sheet Harvest System Composed of Thermoreversible Methylcellulose Hydrogels. Biomacromolecules, 2006, 7, 736-743.	2.6	119
32	Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohydrate Polymers, 2018, 180, 286-296.	5.1	119
33	Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. Effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. Journal of Applied Polymer Science, 1999, 74, 1093-1107.	1.3	115
34	Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior. Biomaterials, 2002, 23, 3257-3267.	5.7	113
35	Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. International Journal of Biological Macromolecules, 2019, 126, 141-150.	3.6	112
36	Novel Technology for the Preparation of Self-Assembled Catechin/Gelatin Nanoparticles and Their Characterization. Journal of Agricultural and Food Chemistry, 2010, 58, 6728-6734.	2.4	110

#	Article	IF	CITATIONS
37	Mutlifunctional nanoparticles prepared from arginine-modified chitosan and thiolated fucoidan for oral delivery of hydrophobic and hydrophilic drugs. Carbohydrate Polymers, 2018, 193, 163-172.	5.1	108
38	Selfâ€Assembled pHâ€Sensitive Nanoparticles: A Platform for Oral Delivery of Protein Drugs. Advanced Functional Materials, 2010, 20, 3695-3700.	7.8	104
39	Chitosan-Polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I. Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer. , 1999, 74, 1868-1879.		99
40	Delivery of Berberine Using Chitosan/Fucoidan-Taurine Conjugate Nanoparticles for Treatment of Defective Intestinal Epithelial Tight Junction Barrier. Marine Drugs, 2014, 12, 5677-5697.	2.2	97
41	The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials, 2008, 29, 742-751.	5.7	96
42	Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocolloids, 2013, 32, 9-19.	5.6	95
43	Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 128, 973-984.	3.6	90
44	Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives. Advanced Healthcare Materials, 2021, 10, e2001384.	3.9	88
45	Fucoidan-based, tumor-activated nanoplatform for overcoming hypoxia and enhancing photodynamic therapy and antitumor immunity. Biomaterials, 2020, 257, 120227.	5.7	85
46	Preparation of fucoidan-shelled and genipin-crosslinked chitosan beads for antibacterial application. Carbohydrate Polymers, 2015, 126, 97-107.	5.1	83
47	Antibacterial Effects of Chitosan/Cationic Peptide Nanoparticles. Nanomaterials, 2018, 8, 88.	1.9	82
48	Adsorption of copper(II) ions by a chitosan–oxalate complex biosorbent. International Journal of Biological Macromolecules, 2015, 72, 136-144.	3.6	81
49	Release of indomethacin from a novel chitosan microsphere prepared by a naturally occurring crosslinker: Examination of crosslinking and polycation-anionic drug interaction. Journal of Applied Polymer Science, 2001, 81, 1700-1711.	1.3	80
50	Synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium. Bioresource Technology, 2009, 100, 4348-4353.	4.8	79
51	H ₂ O ₂ -Depleting and O ₂ -Generating Selenium Nanoparticles for Fluorescence Imaging and Photodynamic Treatment of Proinflammatory-Activated Macrophages. ACS Applied Materials & Interfaces, 2017, 9, 5158-5172.	4.0	77
52	A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydrate Polymers, 2019, 206, 664-673.	5.1	77
53	Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan. Biomaterials, 2012, 33, 6254-6263.	5.7	74
54	Combination of carboxymethyl chitosan-coated magnetic nanoparticles and chitosan-citrate complex gel beads as a novel magnetic adsorbent. Carbohydrate Polymers, 2015, 131, 255-263.	5.1	74

#	Article	IF	CITATIONS
55	Preparation and characterization of radical and pH-responsive chitosan–gallic acid conjugate drug carriers. Carbohydrate Polymers, 2011, 84, 794-802.	5.1	73
56	EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine, 2016, 11, 9-30.	1.7	72
57	Adsorption of indomethacin onto chemically modified chitosan beads. Polymer, 2002, 43, 757-765.	1.8	71
58	Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers. Acta Biomaterialia, 2013, 9, 7449-7459.	4.1	69
59	Development of bacterial cellulose/chitin multi-nanoï¬bers based smart films containing natural active microspheres and nanoparticles formed in situ. Carbohydrate Polymers, 2020, 228, 115370.	5.1	69
60	Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe ₂ O ₄ Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 1273-1279.	4.0	67
61	Engineering a Nanoscale Alâ€MOFâ€Armored Antigen Carried by a "Trojan Horseâ€â€Like Platform for Oral Vaccination to Induce Potent and Longâ€Lasting Immunity. Advanced Functional Materials, 2019, 29, 1904828.	7.8	67
62	Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials, 2012, 33, 3306-3315.	5.7	63
63	Tea catechins-cross-linked methylcellulose active films for inhibition of light irradiation and lipid peroxidation induced β-carotene degradation. Food Hydrocolloids, 2015, 44, 491-505.	5.6	61
64	Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles. Carbohydrate Polymers, 2020, 242, 116312.	5.1	61
65	Physicochemical, Antimicrobial, and Cytotoxic Characteristics of a Chitosan Film Cross-Linked by a Naturally Occurring Cross-Linking Agent, Aglycone Geniposidic Acid. Journal of Agricultural and Food Chemistry, 2006, 54, 3290-3296.	2.4	58
66	Fucoidan from Laminaria japonica exerts antitumor effects on angiogenesis and micrometastasis in triple-negative breast cancer cells. International Journal of Biological Macromolecules, 2020, 149, 600-608.	3.6	58
67	Antibacterial activity of chitosan–alginate sponges incorporating silver sulfadiazine: Effect of ladder-loop transition of interpolyelectrolyte complex and ionic crosslinking on the antibiotic release. Journal of Applied Polymer Science, 2005, 98, 538-549.	1.3	57
68	Synthesis of a Novel Glycoconjugated Chitosan and Preparation of Its Derived Nanoparticles for Targeting HepG2 Cells. Biomacromolecules, 2007, 8, 892-898.	2.6	54
69	Development of nanocomposite scaffolds based on biomineralization of N,O-carboxymethyl chitosan/fucoidan conjugates for bone tissue engineering. International Journal of Biological Macromolecules, 2018, 120, 2335-2345.	3.6	54
70	Preparation and characterization of porous chitosan–tripolyphosphate beads for copper(II) ion adsorption. Journal of Applied Polymer Science, 2013, 127, 4573-4580.	1.3	50
71	Noninvasive imaging oral absorption of insulin delivered by nanoparticles and its stimulated glucose utilization in controlling postprandial hyperglycemia during OGTT in diabetic rats. Journal of Controlled Release, 2013, 172, 513-522.	4.8	49
72	Combination therapy via oral co-administration of insulin- and exendin-4-loaded nanoparticles to treat type 2 diabetic rats undergoing OGTT. Biomaterials, 2013, 34, 7994-8001.	5.7	49

#	Article	IF	CITATIONS
73	Temperature/pH/Enzyme Triple-Responsive Cationic Protein/PAA- <i>b</i> -PNIPAAm Nanogels for Controlled Anticancer Drug and Photosensitizer Delivery against Multidrug Resistant Breast Cancer Cells. Molecular Pharmaceutics, 2017, 14, 4648-4660.	2.3	49
74	Effect of Grape Seed Proanthocyanidin–Gelatin Colloidal Complexes on Stability and in Vitro Digestion of Fish Oil Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 10200-10208.	2.4	48
75	Preparation and properties of pH-responsive, self-assembled colloidal nanoparticles from guanidine-containing polypeptide and chitosan for antibiotic delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 9-20.	2.3	48
76	Chitosan microspheres: modification of polymeric chem-physical properties of spray-dried microspheres to control the release of antibiotic drug. Journal of Applied Polymer Science, 1999, 71, 747-759.	1.3	46
77	Single-injecting, bioinspired nanocomposite hydrogel that can recruit host immune cells in situ to elicit potent and long-lasting humoral immune responses. Biomaterials, 2019, 216, 119268.	5.7	46
78	Iron(III)-carboxymethylchitin microsphere for the pH-sensitive release of 6-mercaptopurine. Journal of Controlled Release, 1997, 44, 19-32.	4.8	43
79	Miscibility, mechanical characteristic and platelet adhesion of 6-O-carboxymethylchitosan/polyurethane semi-IPN membranes. Journal of Membrane Science, 2006, 276, 68-80.	4.1	43
80	Fabrication of chondroitin sulfate-chitosan composite artificial extracellular matrix for stabilization of fibroblast growth factor. Journal of Biomedical Materials Research - Part A, 2006, 76A, 1-15.	2.1	43
81	Antroquinonol, a Ubiquinone Derivative from the Mushroom <i>Antrodia camphorata</i> , Inhibits Colon Cancer Stem Cell-like Properties: Insights into the Molecular Mechanism and Inhibitory Targets. Journal of Agricultural and Food Chemistry, 2017, 65, 51-59.	2.4	42
82	Free DOX and chitosan- N -arginine conjugate stabilized indocyanine green nanoparticles for combined chemophotothermal therapy. Colloids and Surfaces B: Biointerfaces, 2015, 136, 402-412.	2.5	40
83	Preparation of a silver nanoparticle-based dual-functional sensor using a complexation–reduction method. Physical Chemistry Chemical Physics, 2015, 17, 21243-21253.	1.3	38
84	Development of genipin-crosslinked fucoidan/chitosan- <i>N</i> -arginine nanogels for preventing <i>Helicobacter</i> infection. Nanomedicine, 2017, 12, 1491-1510.	1.7	38
85	Development of Injectable Fucoidan and Biological Macromolecules Hybrid Hydrogels for Intra-Articular Delivery of Platelet-Rich Plasma. Marine Drugs, 2019, 17, 236.	2.2	38
86	A Noninvasive Gutâ€ŧoâ€Brain Oral Drug Delivery System for Treating Brain Tumors. Advanced Materials, 2021, 33, e2100701.	11.1	38
87	Enhanced anticancer effect of ROS-boosted photothermal therapy by using fucoidan-coated polypyrrole nanoparticles. International Journal of Biological Macromolecules, 2021, 166, 98-107.	3.6	37
88	Thiol-Modified Chitosan Sulfate Nanoparticles for Protection and Release of Basic Fibroblast Growth Factor. Bioconjugate Chemistry, 2010, 21, 28-38.	1.8	36
89	CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Acta Biomaterialia, 2016, 35, 280-292.	4.1	36
90	Selfâ€Targeting, Immune Transparent Plasma Protein Coated Nanocomplex for Noninvasive Photothermal Anticancer Therapy. Advanced Healthcare Materials, 2017, 6, 1700181.	3.9	36

#	Article	IF	CITATIONS
91	pH-sensitive behavior of two-component hydrogels composed of N,O-carboxymethyl chitosan and alginate. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1333-1345.	1.9	35
92	Chitosan tablets for controlled release of theophylline: Effect of polymer?drug wet or dry blending and anionic?cationic interpolymer complex. Journal of Applied Polymer Science, 1997, 66, 2495-2505.	1.3	34
93	FRET-Based Dual-Emission and pH-Responsive Nanocarriers for Enhanced Delivery of Protein Across Intestinal Epithelial Cell Barrier. ACS Applied Materials & Interfaces, 2014, 6, 18275-18289.	4.0	34
94	A bioinspired hyperthermic macrophage-based polypyrrole-polyethylenimine (Ppy-PEI) nanocomplex carrier to prevent and disrupt thrombotic fibrin clots. Acta Biomaterialia, 2019, 96, 468-479.	4.1	34
95	Self-organized nanoparticles prepared by guanidine- and disulfide-modified chitosan as a gene delivery carrier. Journal of Materials Chemistry, 2011, 21, 16918.	6.7	33
96	Strategies for improving diabetic therapy via alternative administration routes that involve stimuli-responsive insulin-delivering systems. Advanced Drug Delivery Reviews, 2019, 139, 71-82.	6.6	33
97	Modification of chitosan nanofibers with CuS and fucoidan for antibacterial and bone tissue engineering applications. Carbohydrate Polymers, 2022, 281, 119035.	5.1	32
98	Engineering an integrated electroactive dressing to accelerate wound healing and monitor noninvasively progress of healing. Nano Energy, 2022, 99, 107393.	8.2	32
99	Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation. Soft Matter, 2009, 5, 962.	1.2	31
100	Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins. Journal of Controlled Release, 2017, 259, 168-175.	4.8	31
101	Sustained-release of oxytetracycline from chitosan micro spheresprepared by interfacial acylation and spray hardening methods. Journal of Microencapsulation, 1997, 14, 577-591.	1.2	28
102	Chitosan: Its Applications in Drug-Eluting Devices. Advances in Polymer Science, 2011, , 185-230.	0.4	28
103	Oral Nonviral Gene Delivery for Chronic Protein Replacement Therapy. Advanced Science, 2018, 5, 1701079.	5.6	28
104	Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells. Materials Science and Engineering C, 2020, 114, 111064.	3.8	28
105	Stimuli-responsive materials prepared from carboxymethyl chitosan and poly(Î ³ -glutamic acid) for protein delivery. Carbohydrate Polymers, 2012, 87, 531-536.	5.1	27
106	Self-assembling bubble carriers for oral protein delivery. Biomaterials, 2015, 64, 115-124.	5.7	26
107	A smart and active film with tunable drug release and color change abilities for detection and inhibition of bacterial growth. Materials Science and Engineering C, 2021, 118, 111396.	3.8	25
108	Thrombus-specific theranostic nanocomposite for codelivery of thrombolytic drug, algae-derived anticoagulant and NIR fluorescent contrast agent. Acta Biomaterialia, 2021, 134, 686-701.	4.1	25

#	Article	IF	CITATIONS
109	Electrospun CuS nanoparticles/chitosan nanofiber composites for visible and near-infrared light-driven catalytic degradation of antibiotic pollutants. Chemical Engineering Journal, 2022, 431, 134059.	6.6	25
110	Hydrogel microspheres for stabilization of an antioxidant enzyme: Effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity. Colloids and Surfaces B: Biointerfaces, 2014, 113, 59-68.	2.5	24
111	Preparation and characterization of N-acetylchitosan, N-propionylchitosan and N-butyrylchitosan microspheres for controlled release of 6-mercaptourine. Carbohydrate Polymers, 2005, 60, 219-227.	5.1	23
112	Effect of tannic acid–fish scale gelatin hydrolysate hybrid nanoparticles on intestinal barrier function and α-amylase activity. Food and Function, 2015, 6, 2283-2292.	2.1	22
113	Delivery of polysaccharides from Ophiopogon japonicus (OJPs) using OJPs/chitosan/whey protein co-assembled nanoparticles to treat defective intestinal epithelial tight junction barrier. International Journal of Biological Macromolecules, 2020, 160, 558-570.	3.6	22
114	Active Tumor-Targeted co-Delivery of Epigallocatechin Gallate and Doxorubicin in Nanoparticles for Combination Gastric Cancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 2847-2859.	2.6	21
115	A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats. Biomaterials, 2020, 255, 120157.	5.7	21
116	Tripolyphosphate Cross-Linked Macromolecular Composites for the Growth of Shape- and Size-Controlled Apatites. Molecules, 2013, 18, 27-40.	1.7	20
117	Cure kinetics of a cyanate ester blended with poly(phenylene oxide). Polymer International, 2006, 55, 1296-1303.	1.6	17
118	Synthesis and characterization of a novel glycoconjugated macromolecule. Polymer, 2006, 47, 4348-4358.	1.8	16
119	Polysaccharide-based artificial extracellular matrix: Preparation and characterization of three-dimensional, macroporous chitosan and chondroitin sulfate composite scaffolds. Journal of Applied Polymer Science, 2006, 99, 2091-2100.	1.3	15
120	Characterization and toxicology evaluation of low molecular weight chitosan on zebrafish. Carbohydrate Polymers, 2020, 240, 116164.	5.1	15
121	Treatment of chemotherapy-induced neutropenia in a rat model by using multiple daily doses of oral administration of G-CSF-containing nanoparticles. Biomaterials, 2014, 35, 3641-3649.	5.7	13
122	Synthesis and evaluation of antibacterial and anti-oxidant activity of small molecular chitosan–fucoidan conjugate nanoparticles. Research on Chemical Intermediates, 2018, 44, 4855-4871.	1.3	13
123	Polysaccharideâ€based artificial extracellular matrix: Preparation and characterization of threeâ€dimensional, macroporous chitosan, and heparin composite scaffold. Journal of Applied Polymer Science, 2008, 109, 3639-3644.	1.3	12
124	Galectin-3 Modulates Macrophage Activation and Contributes Smooth Muscle Cells Apoptosis in Abdominal Aortic Aneurysm Pathogenesis. International Journal of Molecular Sciences, 2020, 21, 8257.	1.8	9
125	Synthesis and characterization of a novel chitosanâ€based network prepared using naturally occurring crosslinker. Journal of Polymer Science Part A, 2000, 38, 2804-2814.	2.5	5
126	Kinetic study of chitosanâ€tripolyphosphate complex reaction and acidâ€resistive properties of the chitosanâ€tripolyphosphate gel beads prepared by inâ€liquid curing method. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1551-1564.	2.4	4

#	Article	IF	CITATIONS
127	Structure characterizations and protein resistance of chitosan membranes selectively crosslinked by poly(ethylene glycol) dimethacrylate. Cellulose, 2014, 21, 1431-1444.	2.4	3
128	A novel low-molecular-weight chitosan/gamma-polyglutamic acid polyplexes for nucleic acid delivery into zebrafish larvae. International Journal of Biological Macromolecules, 2022, 194, 384-394.	3.6	3
129	Aglycone geniposidic acid, a naturally occurring crosslinking agent, and its application for the fixation of collagenous tissues. Journal of Biomedical Materials Research - Part A, 2007, 83A, 667-673.	2.1	2
130	Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. , 2000, 38, 2804.		2
131	Chitosan microspheres: modification of polymeric chem-physical properties of spray-dried microspheres to control the release of antibiotic drug. , 1999, 71, 747.		1
132	Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. , 1999, 37, 1551.		1