Federico Valverde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410, 1116-1120.	27.8	1,258
2	Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering. Science, 2004, 303, 1003-1006.	12.6	1,089
3	Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO Journal, 2002, 21, 4327-4337.	7.8	432
4	Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO Journal, 2008, 27, 1277-1288.	7.8	424
5	The <i>Arabidopsis</i> E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering. Plant Cell, 2012, 24, 982-999.	6.6	197
6	CONSTANS and the evolutionary origin of photoperiodic timing of flowering. Journal of Experimental Botany, 2011, 62, 2453-2463.	4.8	161
7	Chlamydomonas CONSTANS and the Evolution of Plant Photoperiodic Signaling. Current Biology, 2009, 19, 359-368.	3.9	106
8	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	5.7	104
9	Organellar Proteomics of Human Platelet Dense Granules Reveals That 14-3-3ζ Is a Granule Protein Related to Atherosclerosis. Journal of Proteome Research, 2007, 6, 4449-4457.	3.7	83
10	Two Arabidopsis ADP-Glucose Pyrophosphorylase Large Subunits (APL1 and APL2) Are Catalytic. Plant Physiology, 2008, 148, 65-76.	4.8	79
11	Photoperiodic Control of Carbon Distribution during the Floral Transition in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2014, 26, 565-584.	6.6	73
12	Phosphorylation of <scp>CONSTANS</scp> and its <scp>COP</scp> 1â€dependent degradation during photoperiodic flowering of Arabidopsis. Plant Journal, 2015, 84, 451-463.	5.7	59
13	Occurrence of a differential expression of the glyceraldehyde-3-phosphate dehydrogenase gene in muscle and liver from euthermic and induced hibernating jerboa (Jaculus orientalis). Cene, 1996, 181, 139-145.	2.2	46
14	Expression, purification, and characterization of recombinant nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Clostridium acetobutylicum. Protein Expression and Purification, 2002, 25, 519-526.	1.3	45
15	ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage. BMC Genomics, 2016, 17, 227.	2.8	45
16	Evolution of photoperiod sensing in plants and algae. Current Opinion in Plant Biology, 2017, 37, 10-17.	7.1	39
17	Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 1997, 179, 4513-4522.	2.2	37
18	Engineering a central metabolic pathway: glycolysis with no net phosphorylation in an Escherichia coli gap mutant complemented with a plant GapN gene. FEBS Letters, 1999, 449, 153-158.	2.8	37

Federico Valverde

#	Article	IF	CITATIONS
19	Characterization of muscle glyceraldehyde-3-phosphate dehydrogenase isoforms from euthermic and induced hibernating Jaculus orientalis. Biochimica Et Biophysica Acta - General Subjects, 1995, 1243, 161-168.	2.4	35
20	Evolutionary Analysis of DELLA-Associated Transcriptional Networks. Frontiers in Plant Science, 2017, 8, 626.	3.6	35
21	Evidence for a posttranslational covalent modification of liver glyceraldehyde-3-phosphate dehydrogenase in hibernating jerboa (Jaculus orientalis). BBA - Proteins and Proteomics, 1996, 1292, 177-187.	2.1	29
22	Evolution of Daily Gene Co-expression Patterns from Algae to Plants. Frontiers in Plant Science, 2017, 8, 1217.	3.6	26
23	Widespread occurrence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase among gram-positive bacteria. International Microbiology, 2005, 8, 251-8.	2.4	26
24	Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Molecular and Cellular Biochemistry, 2003, 247, 195-203.	3.1	25
25	An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling. Plant Physiology, 2015, 168, 561-574.	4.8	23
26	A contribution to the study of plant development evolution based on gene co-expression networks. Frontiers in Plant Science, 2013, 4, 291.	3.6	22
27	New challenges in microalgae biotechnology. European Journal of Protistology, 2016, 55, 95-101.	1.5	22
28	Sugar-mediated transcriptional regulation of the Gap gene system and concerted photosystem II functional modulation in the microalga Scenedesmus vacuolatus. Planta, 2005, 221, 937-952.	3.2	19
29	CONSTANS–FKBP12 interaction contributes to modulation of photoperiodic flowering in Arabidopsis. Plant Journal, 2020, 101, 1287-1302.	5.7	18
30	Evolutionarily conserved photoperiod mechanisms in plants. Plant Signaling and Behavior, 2009, 4, 642-644.	2.4	17
31	Ubiquitin carboxyl-terminal hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis. Scientific Reports, 2019, 9, 17030.	3.3	17
32	Photoperiodic control of sugar release during the floral transition: What is the role of sugars in the florigenic signal?. Plant Signaling and Behavior, 2015, 10, e1017168.	2.4	15
33	Glyceraldehyde-3-phosphate dehydrogenase from Tetrahymena pyriformis: enzyme purification and characterization of a gapC gene with primitive eukaryotic features. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 493-503.	1.6	14
34	Effects of Oxidative and Nitrosative Stress on <i>Tetrahymena pyriformis</i> Glyceraldehydeâ€3â€Phosphate Dehydrogenase. Journal of Eukaryotic Microbiology, 2007, 54, 338-346.	1.7	13
35	Characterization of the Sucrose Phosphate Phosphatase (SPP) Isoforms from Arabidopsis thaliana and Role of the S6PPc Domain in Dimerization. PLoS ONE, 2016, 11, e0166308.	2.5	13
36	Vacuolar H+-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast. Frontiers in Plant Science, 2016, 7, 85.	3.6	11

Federico Valverde

#	Article	IF	CITATIONS
37	Simultaneous Occurrence of Two Different Glyceraldehyde-3-Phosphate Dehydrogenases in Heterocystous N2-Fixing Cyanobacteria. Biochemical and Biophysical Research Communications, 2001, 283, 356-363.	2.1	10
38	Photoperiodic Signaling and Senescence, an Ancient Solution to a Modern Problem?. Frontiers in Plant Science, 2021, 12, 634393.	3.6	9
39	Cloning, gene expression and characterization of a novel bacterial NAD-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Neisseria meningitidis strain Z2491. Molecular and Cellular Biochemistry, 2007, 305, 209-219.	3.1	7
40	Purification of Starch Granules from Arabidopsis Leaves and Determination of Granule-Bound Starch Synthase Activity. Bio-protocol, 2014, 4, .	0.4	3
41	Editorial: Evolution of Gene Regulatory Networks in Plant Development. Frontiers in Plant Science, 2017, 8, 2126.	3.6	2
42	Differential Regulation of Glyceraldehyde-3-Phosphate Dehydrogenases in the Green Alga Chlorella fusca. , 1998, , 3529-3532.		0