
Matthias Boll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467381/publications.pdf Version: 2024-02-01

Μλττμιλς Βοιι

#	Article	IF	CITATIONS
1	Degradation of dibutyl phthalate by Paenarthrobacter sp. Shss isolated from Saravan landfill, Hyrcanian Forests, Iran. Biodegradation, 2022, 33, 59-70.	3.0	9
2	Enoyl-Coenzyme A Respiration via Formate Cycling in Syntrophic Bacteria. MBio, 2022, 13, e0374021.	4.1	2
3	Genes and enzymes involved in the biodegradation of the quaternary carbon compound pivalate in the denitrifying <i>Thauera humireducens</i> strain <scp>PIV</scp> â€1. Environmental Microbiology, 2022, , .	3.8	0
4	Structural Evidence for a [4Feâ€5S] Intermediate in the Nonâ€Redox Desulfuration of Thiouracil. Angewandte Chemie, 2021, 133, 428-435.	2.0	0
5	Structural Evidence for a [4Feâ€5S] Intermediate in the Nonâ€Redox Desulfuration of Thiouracil. Angewandte Chemie - International Edition, 2021, 60, 424-431.	13.8	15
6	Activation of short-chain ketones and isopropanol in sulfate-reducing bacteria. BMC Microbiology, 2021, 21, 50.	3.3	2
7	Functional diversity of prokaryotic HdrA(BC) modules: Role in flavin-based electron bifurcation processes and beyond. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148379.	1.0	18
8	Structural Basis of Cyclic 1,3â€Diene Forming Acylâ€Coenzyme A Dehydrogenases. ChemBioChem, 2021, 22, 3173-3177.	2.6	2
9	The missing enzymatic link in syntrophic methane formation from fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
10	A fully reversible 25-hydroxy steroid kinase involved in oxygen-independent cholesterol side-chain oxidation. Journal of Biological Chemistry, 2021, 297, 101105.	3.4	6
11	Microbial degradation of phthalates: biochemistry and environmental implications. Environmental Microbiology Reports, 2020, 12, 3-15.	2.4	98
12	ATP-dependent hydroxylation of an unactivated primary carbon with water. Nature Communications, 2020, 11, 3906.	12.8	10
13	Tungstoenzymes: Occurrence, Catalytic Diversity and Cofactor Synthesis. Inorganics, 2020, 8, 44.	2.7	29
14	Channeling C1 Metabolism toward S -Adenosylmethionine-Dependent Conversion of Estrogens to Androgens in Estrogen-Degrading Bacteria. MBio, 2020, 11, .	4.1	8
15	Oxygen detoxification by dienoyl oA oxidase involving flavin/disulfide cofactors. Molecular Microbiology, 2020, 114, 17-30.	2.5	1
16	An Aerobic Hybrid Phthalate Degradation Pathway via Phthaloyl-Coenzyme A in Denitrifying Bacteria. Applied and Environmental Microbiology, 2020, 86, .	3.1	5
17	Catabolic Pathways and Enzymes Involved in the Anaerobic Degradation of Monocyclic Aromatic Compounds. , 2020, , 85-133.		5
18	Catabolic Pathways and Enzymes Involved in the Anaerobic Degradation of Polycyclic Aromatic Hydrocarbons. , 2020, , 135-150.		0

#	Article	IF	CITATIONS
19	The class II benzoylâ€coenzyme A reductase complex from the sulfateâ€reducing <i>Desulfosarcina cetonica</i> . Environmental Microbiology, 2019, 21, 4241-4252.	3.8	10
20	One-megadalton metalloenzyme complex in <i>Geobacter metallireducens</i> involved in benzene ring reduction beyond the biological redox window. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2259-2264.	7.1	32
21	Low potential enzymatic hydride transfer via highly cooperative and inversely functionalized flavin cofactors. Nature Communications, 2019, 10, 2074.	12.8	14
22	Enzymes involved in phthalate degradation in sulphateâ€reducing bacteria. Environmental Microbiology, 2019, 21, 3601-3612.	3.8	22
23	Evolution of a xenobiotic degradation pathway: formation and capture of the labile phthaloyl oA intermediate during anaerobic phthalate degradation. Molecular Microbiology, 2018, 108, 614-626.	2.5	15
24	Functional Characterization of Three Specific Acyl-Coenzyme A Synthetases Involved in Anaerobic Cholesterol Degradation in Sterolibacterium denitrificans Chol1S. Applied and Environmental Microbiology, 2018, 84, .	3.1	11
25	A catalytically versatile benzoyl-CoA reductase, key enzyme in the degradation of methyl- and halobenzoates in denitrifying bacteria. Journal of Biological Chemistry, 2018, 293, 10264-10274.	3.4	22
26	Enantioselective Enzymatic Naphthoyl Ring Reduction. Chemistry - A European Journal, 2018, 24, 12505-12508.	3.3	15
27	Four Molybdenum-Dependent Steroid C-25 Hydroxylases: Heterologous Overproduction, Role in Steroid Degradation, and Application for 25-Hydroxyvitamin D ₃ Synthesis. MBio, 2018, 9, .	4.1	16
28	Catabolic Pathways and Enzymes Involved in the Anaerobic Degradation of Polycyclic Aromatic Hydrocarbons. , 2018, , 1-17.		2
29	Catabolic Pathways and Enzymes Involved in the Anaerobic Degradation of Monocyclic Aromatic Compounds. , 2018, , 1-50.		2
30	An unusual strategy for the anoxic biodegradation of phthalate. ISME Journal, 2017, 11, 224-236.	9.8	61
31	A patchwork pathway for oxygenaseâ€independent degradation of side chain containing steroids. Environmental Microbiology, 2017, 19, 4684-4699.	3.8	28
32	Breaking Benzene Aromaticity—Computational Insights into the Mechanism of the Tungsten-Containing Benzoyl-CoA Reductase. Journal of the American Chemical Society, 2017, 139, 14488-14500.	13.7	19
33	Phthaloylâ€coenzyme A decarboxylase from <i>Thauera chlorobenzoica</i> : the prenylated flavinâ€; K ⁺ â€and Fe ²⁺ â€dependent key enzyme of anaerobic phthalate degradation. Environmental Microbiology, 2017, 19, 3734-3744.	3.8	27
34	Promiscuous Defluorinating Enoyl-CoA Hydratases/Hydrolases Allow for Complete Anaerobic Degradation of 2-Fluorobenzoate. Frontiers in Microbiology, 2017, 8, 2579.	3.5	21
35	ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen. MBio, 2016, 7, .	4.1	35
36	ATP-Dependent Electron Activation Module of Benzoyl-Coenzyme A Reductase from the Hyperthermophilic Archaeon Ferroglobus placidus. Biochemistry, 2016, 55, 5578-5586.	2.5	11

#	Article	IF	CITATIONS
37	25â€Hydroxyvitaminâ€D ₃ Synthesis by Enzymatic Steroid Sideâ€Chain Hydroxylation with Water. Angewandte Chemie - International Edition, 2016, 55, 1881-1884.	13.8	20
38	25â€Hydroxyvitaminâ€D ₃ Synthesis by Enzymatic Steroid Sideâ€Chain Hydroxylation with Water. Angewandte Chemie, 2016, 128, 1913-1916.	2.0	2
39	Fermentative Cyclohexane Carboxylate Formation in <i>Syntrophus aciditrophicus</i> . Journal of Molecular Microbiology and Biotechnology, 2016, 26, 165-179.	1.0	11
40	Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 5-28.	1.0	615
41	Ethylbenzene Dehydrogenase and Related Molybdenum Enzymes Involved in Oxygen-Independent Alkyl Chain Hydroxylation. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 45-62.	1.0	50
42	Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 119-137.	1.0	29
43	Anaerobic Degradation of Benzene and Polycyclic Aromatic Hydrocarbons. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 92-118.	1.0	218
44	Functional Gene Markers for Fumarate-Adding and Dearomatizing Key Enzymes in Anaerobic Aromatic Hydrocarbon Degradation in Terrestrial Environments. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 180-194.	1.0	52
45	Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Molecular Microbiology, 2015, 95, 162-172.	2.5	39
46	Enzymes of the benzoylâ€coenzyme <scp>A</scp> degradation pathway in the hyperthermophilic archaeon <scp><i>F</i></scp> <i>erroglobus placidus</i> . Environmental Microbiology, 2015, 17, 3289-3300.	3.8	18
47	Structural basis of enzymatic benzene ring reduction. Nature Chemical Biology, 2015, 11, 586-591.	8.0	52
48	Unraveling the Specific Regulation of the Central Pathway for Anaerobic Degradation of 3-Methylbenzoate. Journal of Biological Chemistry, 2015, 290, 12165-12183.	3.4	13
49	Glutarylâ€coenzyme A dehydrogenase from <i>Geobacter</i> Â <i>metallireducens</i> –Âinteraction with electron transferring flavoprotein and kinetic basis of unidirectional catalysis. FEBS Journal, 2014, 281, 5120-5131.	4.7	6
50	Anaerobic degradation of homocyclic aromatic compounds via arylcarboxylâ€coenzyme <scp>A</scp> esters: organisms, strategies and key enzymes. Environmental Microbiology, 2014, 16, 612-627.	3.8	156
51	A PCR-based assay for the detection of anaerobic naphthalene degradation. FEMS Microbiology Letters, 2014, 354, 55-59.	1.8	18
52	Enzymes Involved in a Novel Anaerobic Cyclohexane Carboxylic Acid Degradation Pathway. Journal of Bacteriology, 2014, 196, 3667-3674.	2.2	26
53	The Benzoylâ€Coenzyme A Reductase and 2â€Hydroxyacylâ€Coenzyme A Dehydratase Radical Enzyme Family. ChemBioChem, 2014, 15, 2188-2194.	2.6	40
54	Characterization of the <i>mbd</i> cluster encoding the anaerobic 3â€methylbenzoylâ€CoA central pathway. Environmental Microbiology, 2013, 15, 148-166.	3.8	37

#	Article	IF	CITATIONS
55	Identification and characterization of 2â€naphthoylâ€coenzyme A reductase, the prototype of a novel class of dearomatizing reductases. Molecular Microbiology, 2013, 88, 1032-1039.	2.5	52
56	Cyclohexanecarboxyl-Coenzyme A (CoA) and Cyclohex-1-ene-1-Carboxyl-CoA Dehydrogenases, Two Enzymes Involved in the Fermentation of Benzoate and Crotonate in Syntrophus aciditrophicus. Journal of Bacteriology, 2013, 195, 3193-3200.	2.2	27
57	<scp>ATP</scp> â€dependent/â€independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environmental Microbiology, 2013, 15, 1832-1841.	3.8	35
58	Identification and Characterization of a Succinyl-Coenzyme A (CoA):Benzoate CoA Transferase in Geobacter metallireducens. Journal of Bacteriology, 2012, 194, 2501-2508.	2.2	25
59	Anaerobic degradation of 4â€methylbenzoate via a specific 4â€methylbenzoyl oA pathway. Environmental Microbiology, 2012, 14, 1118-1132.	3.8	27
60	Microbial degradation of aromatic compounds — from one strategy to four. Nature Reviews Microbiology, 2011, 9, 803-816.	28.6	952
61	Occurrence, genes and expression of the W/Seâ€containing class II benzoylâ€coenzyme A reductases in anaerobic bacteria. Environmental Microbiology, 2011, 13, 696-709.	3.8	65
62	Enzymes involved in the anaerobic degradation of <i>meta</i> â€substituted halobenzoates. Molecular Microbiology, 2011, 82, 758-769.	2.5	39
63	Conversion of a decarboxylating to a non-decarboxylating glutaryl-coenzyme A dehydrogenase by site-directed mutagenesis. FEBS Letters, 2011, 585, 1317-1321.	2.8	11
64	Combined Application of PCR-Based Functional Assays for the Detection of Aromatic-Compound-Degrading Anaerobes. Applied and Environmental Microbiology, 2011, 77, 5056-5061.	3.1	55
65	Reversible Biological Birch Reduction at an Extremely Low Redox Potential. Journal of the American Chemical Society, 2010, 132, 9850-9856.	13.7	85
66	Structural Basis for Promoting and Preventing Decarboxylation in Glutaryl-Coenzyme A Dehydrogenases. Biochemistry, 2010, 49, 5350-5357.	2.5	14
67	Decarboxylating and Nondecarboxylating Glutaryl-Coenzyme A Dehydrogenases in the Aromatic Metabolism of Obligately Anaerobic Bacteria. Journal of Bacteriology, 2009, 191, 4401-4409.	2.2	40
68	Differential Membrane Proteome Analysis Reveals Novel Proteins Involved in the Degradation of Aromatic Compounds in Geobacter metallireducens. Molecular and Cellular Proteomics, 2009, 8, 2159-2169.	3.8	25
69	Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17687-17692.	7.1	112
70	Purification and Characterization of Active-Site Components of the Putative <i>p</i> -Cresol Methylhydroxylase Membrane Complex from <i>Geobacter metallireducens</i> . Journal of Bacteriology, 2008, 190, 6493-6500.	2.2	25
71	6â€Oxocyclohexâ€1â€eneâ€1â€earbonylâ€eoenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environmental Microbiology, 2008, 10, 1547-1556.	3.8	99
72	Mechanism of Enzymatic Birch Reduction: Stereochemical Course and Exchange Reactions of Benzoyl-CoA Reductase, Journal of the American Chemical Society, 2008, 130, 14050-14051	13.7	46

#	Article	IF	CITATIONS
73	Aromatizing Cyclohexa-1,5-diene-1-carbonyl-Coenzyme A Oxidase. Journal of Biological Chemistry, 2008, 283, 20713-20721.	3.4	30
74	Cyclohexa-1,5-Diene-1-Carbonyl-Coenzyme A (CoA) Hydratases of Geobacter metallireducens and Syntrophus aciditrophicus : Evidence for a Common Benzoyl-CoA Degradation Pathway in Facultative and Strict Anaerobes. Journal of Bacteriology, 2007, 189, 1055-1060.	2.2	64
75	Gene clusters involved in anaerobic benzoate degradation of <i>Geobacter metallireducens</i> . Molecular Microbiology, 2005, 58, 1238-1252.	2.5	147
76	Unusual reactions involved in anaerobic metabolism of phenolic compounds. Biological Chemistry, 2005, 386, 989-997.	2.5	45
77	Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1707, 34-50.	1.0	76
78	Dearomatizing Benzene Ring Reductases. Journal of Molecular Microbiology and Biotechnology, 2005, 10, 132-142.	1.0	92
79	The <i>bzd</i> Gene Cluster, Coding for Anaerobic Benzoate Catabolism, in <i>Azoarcus</i> sp. Strain CIB. Journal of Bacteriology, 2004, 186, 5762-5774.	2.2	111
80	Selenocysteine-Containing Proteins in Anaerobic Benzoate Metabolism of <i>Desulfococcus multivorans</i> . Journal of Bacteriology, 2004, 186, 2156-2163.	2.2	69
81	Structure of a Xanthine Oxidase-Related 4-Hydroxybenzoyl-CoA Reductase with an Additional [4Fe-4S] Cluster and an Inverted Electron Flow. Structure, 2004, 12, 2249-2256.	3.3	62
82	Substrate Binding and Reduction of Benzoyl-CoA Reductase:Â Evidence for Nucleotide-Dependent Conformational Changesâ€. Biochemistry, 2004, 43, 1376-1385.	2.5	20
83	Properties of 2-Oxoglutarate:Ferredoxin Oxidoreductase from <i>Thauera aromatica</i> and Its Role in Enzymatic Reduction of the Aromatic Ring. Journal of Bacteriology, 2002, 184, 3975-3983.	2.2	51
84	A Birch-like Mechanism in Enzymatic Benzoyl-CoA Reduction:  A Kinetic Study of Substrate Analogues Combined with an ab Initio Model. Biochemistry, 2002, 41, 1752-1758.	2.5	57
85	Single Turnover EPR Studies of Benzoyl-CoA Reductaseâ€,‡. Biochemistry, 2001, 40, 7612-7620.	2.5	24
86	Redox Centers of 4-Hydroxybenzoyl-CoA Reductase, a Member of the Xanthine Oxidase Family of Molybdenum-containing Enzymes. Journal of Biological Chemistry, 2001, 276, 47853-47862.	3.4	37
87	Mechanism of ATP-driven electron transfer catalyzed by the benzene ring-reducing enzyme benzoyl- CoA reductase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13619-13624.	7.1	44
88	EPR and Mössbauer Studies of Benzoyl-CoA Reductase. Journal of Biological Chemistry, 2000, 275, 31857-31868.	3.4	38
89	Nonaromatic Products from Anoxic Conversion of Benzoyl-CoA with Benzoyl-CoA Reductase and Cyclohexa-1,5-diene-1-carbonyl-CoA Hydratase. Journal of Biological Chemistry, 2000, 275, 21889-21895.	3.4	56
90	Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl 0A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. FEBS Journal, 1998, 251, 946-954.	0.2	58

#	Article	IF	CITATIONS
91	Genes coding for the benzoyl oA pathway of anaerobic aromatic metabolism in the bacterium <i>Thauera aromatica</i> . FEBS Journal, 1998, 256, 148-154.	0.2	81
92	Benzoylâ€CoA Reductase (Dearomatizing), A Key Enzyme of Anaerobic Aromatic Metabolism. FEBS Journal, 1997, 244, 840-851.	0.2	88
93	Benzoylâ€Coenzyme A Reductase (Dearomatizing), a Key Enzyme of Anaerobic Aromatic Metabolism. FEBS Journal, 1995, 234, 921-933.	0.2	205