Zhi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1467259/publications.pdf

Version: 2024-02-01

34	1,083	19	32
papers	citations	h-index	g-index
34	34	34	1013 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Comparative study on the rheological properties of myofibrillar proteins from different kinds of meat. LWT - Food Science and Technology, 2022, 153, 112458.	5.2	28
2	Heat accelerates degradation of \hat{l}^2 -lactoglobulin fibrils at neutral pH. Food Hydrocolloids, 2022, 124, 107291.	10.7	18
3	Effect of NaCl and CaCl2 concentration on the rheological and structural characteristics of thermally-induced quinoa protein gels. Food Hydrocolloids, 2022, 124, 107350.	10.7	42
4	Kinetics of pepsin-induced hydrolysis and the coagulation of milk proteins. Journal of Dairy Science, 2022, 105, 990-1003.	3.4	19
5	Impact of incorporations of various polysaccharides on rheological and microstructural characteristics of heat-induced quinoa protein isolate gels. Food Biophysics, 2022, 17, 314-323.	3.0	23
6	Impact of high-pressure homogenization on physico-chemical, structural, and rheological properties of quinoa protein isolates. Food Structure, 2022, 32, 100265.	4.5	28
7	Physical modification of waxy maize starch: Combining SDS and freezing/thawing treatments to modify starch structure and functionality. Food Structure, 2022, 32, 100263.	4.5	5
8	Structural Reorganization of Noncellulosic Polymers Observed In Situ during Dilute Acid Pretreatment by Small-Angle Neutron Scattering. ACS Sustainable Chemistry and Engineering, 2022, 10, 314-322.	6.7	7
9	Chemical and Morphological Structure of Transgenic Switchgrass Organosolv Lignin Extracted by Ethanol, Tetrahydrofuran, and \hat{l}^3 -Valerolactone Pretreatments. ACS Sustainable Chemistry and Engineering, 2022, 10, 9041-9052.	6.7	10
10	Gelatin-Based Nanocomposites: A Review. Polymer Reviews, 2021, 61, 765-813.	10.9	24
11	Viscosity, size, structural and interfacial properties of sodium caseinate obtained from A2 milk. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126163.	4.7	6
12	Comparison of Cd(II) adsorption properties onto cellulose, hemicellulose and lignin extracted from rice bran. LWT - Food Science and Technology, 2021, 144, 111230.	5.2	19
13	In-flow SAXS investigation of whey protein isolate hydrolyzed by bromelain. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127662.	4.7	5
14	Formation and characterisation of high-internal-phase emulsions stabilised by high-pressure homogenised quinoa protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127688.	4.7	29
15	Impact of High Hydrostatic Pressure on the Gelation Behavior and Microstructure of Quinoa Protein Isolate Dispersions. ACS Food Science & Technology, 2021, 1, 2144-2151.	2.7	14
16	Formation by high power ultrasound of aggregated emulsions stabilised with milk protein concentrate (MPC70). Ultrasonics Sonochemistry, 2021, 81, 105852.	8.2	7
17	Ammonia-salt solvent promotes cellulosic biomass deconstruction under ambient pretreatment conditions to enable rapid soluble sugar production at ultra-low enzyme loadings. Green Chemistry, 2020, 22, 204-218.	9.0	28
18	Electrospinning Induced Orientation of Protein Fibrils. Biomacromolecules, 2020, 21, 2772-2785.	5.4	21

#	Article	IF	CITATIONS
19	Effect of porous waxy rice starch addition on acid milk gels: Structural and physicochemical functionality. Food Hydrocolloids, 2020, 109, 106092.	10.7	7
20	Effect of genipin cross-linking on the structural features of skim milk in the presence of ethylenediaminetetraacetic acid (EDTA). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125174.	4.7	11
21	Self-Assembled Micelles Based on OSA-Modified Starches for Enhancing Solubility of Î ² -Carotene: Effect of Starch Macromolecular Architecture. Journal of Agricultural and Food Chemistry, 2019, 67, 6614-6624.	5.2	46
22	Rheological and structural characterization of acidified skim milks and infant formulae made from cow and goat milk. Food Hydrocolloids, 2019, 96, 161-170.	10.7	41
23	Effect of amyloglucosidase hydrolysis on the multi-scale supramolecular structure of corn starch. Carbohydrate Polymers, 2019, 212, 40-50.	10.2	38
24	Characterisation of rheology and microstructures of \hat{I}^2 -carrageenan in ethanol-water mixtures. Food Research International, 2018, 107, 738-746.	6.2	38
25	Rheological and structural properties of coagulated milks reconstituted in D2O: Comparison between rennet and a tamarillo enzyme (tamarillin). Food Hydrocolloids, 2018, 79, 170-178.	10.7	22
26	In situ study of skim milk structure changes under high hydrostatic pressure using synchrotron SAXS. Food Hydrocolloids, 2018, 77, 772-776.	10.7	23
27	Effects of sucrose addition on the rheology and microstructure of \hat{l}^2 -carrageenan gel. Food Hydrocolloids, 2018, 75, 164-173.	10.7	174
28	Impact of pressure on physicochemical properties of starch dispersions. Food Hydrocolloids, 2017, 68, 164-177.	10.7	74
29	Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate. PLoS ONE, 2016, 11, e0156061.	2.5	12
30	In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS. Food Hydrocolloids, 2016, 56, 58-61.	10.7	56
31	Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents. International Journal of Biological Macromolecules, 2016, 85, 604-614.	7.5	52
32	Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules, 2016, 17, 590-600.	5.4	88
33	Investigating linear and nonlinear viscoelastic behaviour and microstructures of gelatin-multiwalled carbon nanotube composites. RSC Advances, 2015, 5, 107916-107926.	3.6	21
34	In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction. Carbohydrate Polymers, 2013, 97, 235-238.	10.2	47