
Begoña Blasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1466726/publications.pdf Version: 2024-02-01

RECOÃ+A RIASCO

#	Article	IF	CITATIONS
1	A New Calcium Vectoring Technology: Concentration and Distribution of Ca and Agronomic Efficiency in Pepper Plants. Agronomy, 2022, 12, 410.	1.3	2
2	Improvement of the physiological response of barley plants to both Zinc deficiency and toxicity by the application of calcium silicate. Plant Science, 2022, 319, 111259.	1.7	6
3	Physiological Study of the Efficacy of Archer® Eclipse in the Protection against Sunburn in Cucumber Plants. Horticulturae, 2022, 8, 500.	1.2	1
4	Effect of <scp>l</scp> â€amino acidâ€based biostimulants on nitrogen use efficiency (<scp>NUE</scp>) in lettuce plants. Journal of the Science of Food and Agriculture, 2022, 102, 7098-7106.	1.7	11
5	Analysis of RAZORMIN® as a Biostimulant and Its Effect on the Phytotoxicity Mitigation Caused by Fungicide Azoxystrobin in Pepper. Agronomy, 2022, 12, 1418.	1.3	2
6	Evaluation of Physiological and Quality Parameters of Green Asparagus Spears Subjected to Three Treatments against the Decline Syndrome. Agronomy, 2021, 11, 937.	1.3	3
7	The application of the silicon-based biostimulant Codasil® offset water deficit of lettuce plants. Scientia Horticulturae, 2021, 285, 110177.	1.7	13
8	Effect of CAX1a TILLING mutations on photosynthesis performance in salt-stressed Brassica rapa plants. Plant Science, 2021, 311, 111013.	1.7	8
9	Calcium silicate ameliorates zinc deficiency and toxicity symptoms in barley plants through improvements in nitrogen metabolism and photosynthesis. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	6
10	Nitrogen and photorespiration pathways, salt stress genotypic tolerance effects in tomato plants (Solanum lycopersicum L.). Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	7
11	Effects of asparagus decline on nutrients and phenolic compounds, spear quality, and allelopathy. Scientia Horticulturae, 2020, 261, 109029.	1.7	18
12	Tolerance to cadmium toxicity and phytoremediation potential of three Brassica rapa CAX1a TILLING mutants. Ecotoxicology and Environmental Safety, 2020, 189, 109961.	2.9	13
13	CAX1a TILLING Mutations Modify the Hormonal Balance Controlling Growth and Ion Homeostasis in Brassica rapa Plants Subjected to Salinity. Agronomy, 2020, 10, 1699.	1.3	3
14	Study of salt-stress tolerance and defensive mechanisms in Brassica rapa CAX1a TILLING mutants. Environmental and Experimental Botany, 2020, 175, 104061.	2.0	13
15	Assaying the use of sodium thiosulphate as a biostimulant and its effect on cadmium accumulation and tolerance in Brassica oleracea plants. Ecotoxicology and Environmental Safety, 2020, 200, 110760.	2.9	9
16	Study of Zn accumulation and tolerance of HMA4 TILLING mutants of Brassica rapa grown under Zn deficiency and Zn toxicity. Plant Science, 2019, 287, 110201.	1.7	14
17	Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium phytoremediation programs. Ecotoxicology and Environmental Safety, 2019, 180, 88-94.	2.9	28
18	Effect of CAX1a TILLING mutations and calcium concentration on some primary metabolism processes in Brassica rapa plants. Journal of Plant Physiology, 2019, 237, 51-60.	1.6	6

#	Article	IF	CITATIONS
19	NaSH: Phytotoxin or biostimulant in N assimilation in Brassica oleracea L. â€~Bronco' plants?. Scientia Horticulturae, 2019, 249, 471-477.	1.7	1

Hydrogen sulphide increase the tolerance to alkalinity stress in cabbage plants (Brassica oleracea L.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

21	Analysis of metabolic and nutritional biomarkers in <i>Brassica oleracea</i> L. cv. Bronco plants under alkaline stress. Journal of Horticultural Science and Biotechnology, 2018, 93, 279-288.	0.9	7
22	Oxidative Stress in Relation With Micronutrient Deficiency or Toxicity. , 2018, , 181-194.		9
23	Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. Journal of Plant Physiology, 2018, 231, 329-336.	1.6	51
24	Physiological profile of CAX1a TILLING mutants of Brassica rapa exposed to different calcium doses. Plant Science, 2018, 272, 164-172.	1.7	11
25	Comparative study of the toxic effect of salinity in different genotypes of tomato plants: Carboxylates metabolism. Scientia Horticulturae, 2017, 217, 173-178.	1.7	11
26	Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco. Plant Science, 2017, 258, 45-51.	1.7	36
27	Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. Journal of Plant Physiology, 2017, 216, 164-173.	1.6	32
28	Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable <i>Lactuca sativa</i> L. Journal of the Science of Food and Agriculture, 2017, 97, 1828-1836.	1.7	18
29	Silicon-mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins. Frontiers in Plant Science, 2017, 8, 948.	1.7	132
30	Response of carboxylate metabolism to zinc deficiency inLactuca sativaandBrassica oleraceaplants. Journal of Plant Nutrition and Soil Science, 2016, 179, 758-764.	1.1	2
31	Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency. Phytochemistry, 2016, 130, 85-89.	1.4	33
32	Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4+ assimilation and nitrogen derived protective compounds. Plant Science, 2016, 248, 8-16.	1.7	21
33	Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. Journal of Plant Physiology, 2015, 176, 16-24.	1.6	48
34	Genetical and Comparative Genomics of <i>Brassica</i> under Altered Ca Supply Identifies <i>Arabidopsis</i> Ca-Transporter Orthologs Â. Plant Cell, 2014, 26, 2818-2830.	3.1	40
35	Physiological and Nutritional Evaluation of the Application of Phosphite as a Phosphorus Source in Cucumber Plants. Communications in Soil Science and Plant Analysis, 2014, 45, 204-222.	0.6	8
36	Biofortification with potassium: antioxidant responses during postharvest of cherry tomato fruits in cold storage. Acta Physiologiae Plantarum, 2014, 36, 283-293.	1.0	17

Begoña Blasco

#	Article	lF	CITATIONS
37	Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. Journal of the Science of Food and Agriculture, 2014, 94, 63-70.	1.7	25
38	Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance. Plant Science, 2014, 227, 110-121.	1.7	67
39	Comparative study of the toxic effect of Zn in Lactuca sativa and Brassica oleracea plants: I. Growth, distribution, and accumulation of Zn, and metabolism of carboxylates. Environmental and Experimental Botany, 2014, 107, 98-104.	2.0	33
40	lodine Effects on Phenolic Metabolism in Lettuce Plants under Salt Stress. Journal of Agricultural and Food Chemistry, 2013, 61, 2591-2596.	2.4	47
41	NUTRITIONAL BALANCE CHANGES IN LETTUCE PLANT GROWN UNDER DIFFERENT DOSES AND FORMS OF SELENIUM. Journal of Plant Nutrition, 2013, 36, 1344-1354.	0.9	27
42	A Fogging System Improves Antioxidative Defense Responses and Productivity in Tomato. Journal of the American Society for Horticultural Science, 2013, 138, 267-276.	0.5	7
43	STUDY OF THE INTERACTIONS BETWEEN IODINE AND MINERAL NUTRIENTS IN LETTUCE PLANTS. Journal of Plant Nutrition, 2012, 35, 1958-1969.	0.9	28
44	Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Science, 2012, 188-189, 89-96.	1.7	89
45	Ammonium formation and assimilation in PSARKâ^·IPT tobacco transgenic plants under low N. Journal of Plant Physiology, 2012, 169, 157-162.	1.6	21
46	Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants. Journal of Botany, 2012, 2012, 1-17.	1.2	52
47	Response of carbon and nitrogen-rich metabolites to nitrogen deficiency in PSARKâ^·IPT tobacco plants. Plant Physiology and Biochemistry, 2012, 57, 231-237.	2.8	29
48	Cytokinin-Dependent Improvement in Transgenic P _{SARK} ::IPT Tobacco under Nitrogen Deficiency. Journal of Agricultural and Food Chemistry, 2011, 59, 10491-10495.	2.4	24
49	Ammonia production and assimilation: Its importance as a tolerance mechanism during moderate water deficit in tomato plants. Journal of Plant Physiology, 2011, 168, 816-823.	1.6	60
50	Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 2011, 181, 195-202.	1.7	65
51	Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regulation, 2011, 65, 137-143.	1.8	25
52	Does Iodine Biofortification Affect Oxidative Metabolism in Lettuce Plants?. Biological Trace Element Research, 2011, 142, 831-842.	1.9	51
53	Variation in the use efficiency of N under moderate water deficit in tomato plants (Solanum) Tj ETQq1 1 0.7843	314 rgBT /0 	Overlock 10 Tf
54	The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2011, 91, 152-162.	1.7	93

Begoña Blasco

#	Article	IF	CITATIONS
55	lodine application affects nitrogen-use efficiency of lettuce plants (Lactuca sativaL.). Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2011, 61, 378-383.	0.3	7
56	Nitrogen-Use Efficiency in Relation to Different Forms and Application Rates of Se in Lettuce Plants. Journal of Plant Growth Regulation, 2010, 29, 164-170.	2.8	34
57	Photorespiration Process and Nitrogen Metabolism in Lettuce Plants (Lactuca sativa L.): Induced Changes in Response to Iodine Biofortification. Journal of Plant Growth Regulation, 2010, 29, 477-486.	2.8	44
58	Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant and Soil, 2010, 335, 339-347.	1.8	63
59	Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. Journal of the Science of Food and Agriculture, 2010, 90, 1914-1919.	1.7	57
60	Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 2010, 178, 30-40.	1.7	318
61	Environmental conditions affect pectin solubilization in cherry tomato fruits grown in two experimental Mediterranean greenhouses. Environmental and Experimental Botany, 2009, 67, 320-327.	2.0	13
62	Environmental conditions in relation to stress in cherry tomato fruits in two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2009, 89, 735-742.	1.7	21
63	Production and detoxification of H ₂ O ₂ in lettuce plants exposed to selenium. Annals of Applied Biology, 2009, 154, 107-116.	1.3	91
64	Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biology, 2009, 11, 671-677.	1.8	61
65	Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Science, 2009, 176, 545-552.	1.7	55
66	Regulation of sulphur assimilation in lettuce plants in the presence of selenium. Plant Growth Regulation, 2008, 56, 43-51.	1.8	32
67	lodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Annals of Applied Biology, 2008, 152, 289-299.	1.3	120
68	Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae, 2008, 116, 248-255.	1.7	111
69	Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity. Annals of Botany, 2007, 100, 747-756.	1.4	217
70	Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiologia Plantarum, 2005, 124, 465-475.	2.6	59