Xin Fu Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1466616/publications.pdf

Version: 2024-02-01

1163117 1058476 22 231 8 14 citations h-index g-index papers 23 23 23 341 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Atomic insights into the ordered solid solutions of Ni and Au in ÎCu6Sn5. Acta Materialia, 2022, 224, 117513.	7.9	3
2	In Situ Observation of Liquid Solder Alloys and Solid Substrate Reactions Using High-Voltage Transmission Electron Microscopy. Materials, 2022, 15, 510.	2.9	3
3	The Effects of Temperature and Solute Diffusion on Volume Change in Sn-Bi Solder Alloys. Jom, 2022, 74, 1739-1750.	1.9	8
4	Systematic investigation of the effect of Ni concentration in Cu-xNi/Sn couples for high temperature soldering. Acta Materialia, 2022, 226, 117661.	7.9	14
5	Evaluation of silicon effects on abrasion performance, microstructure and crystalline structure of NiHard-4 white cast iron using synchrotron X-ray diffraction. Materialia, 2022, 21, 101332.	2.7	2
6	Hydrogen sorption behaviour of Mg-5wt.%La alloys after the initial hydrogen absorption process. International Journal of Hydrogen Energy, 2022, 47, 16132-16143.	7.1	7
7	Na-modified cast hypo-eutectic Mg–Mg2Si alloys for solid-state hydrogen storage. Journal of Power Sources, 2022, 538, 231538.	7.8	10
8	Comparison of the Mechanical Properties of Conventional Pb-free Solders and Eutectic Sn-Bi Solder. , 2022, , .		2
9	Interfacial reactions between Ga and Cu-xNi (x=0, 2, 6, 10, 14) substrates and the strength of Cu-xNi/Ga/Cu-xNi joints. Intermetallics, 2021, 133, 107168.	3.9	6
10	Rapid fabrication of tin-copper anodes for lithium-ion battery applications. Journal of Alloys and Compounds, 2021, 867, 159031.	5.5	9
11	Evidence of Copper Separation in Lithiated Cu ₆ Sn ₅ Lithium-lon Battery Anodes. ACS Applied Energy Materials, 2020, 3, 141-145.	5.1	14
12	Electrochemically enhanced Cu6Sn5 anodes with tailored crystal orientation and ordered atomic arrangements for lithium-ion battery applications. Acta Materialia, 2020, 201, 341-349.	7.9	5
13	The Effects of Trace Sb and Zn Additions on Cu6Sn5 Lithium-Ion Battery Anodes. Journal of Nanoscience and Nanotechnology, 2020, 20, 5182-5191.	0.9	3
14	The effects of Ni on inhibiting the separation of Cu during the lithiation of Cu6Sn5 lithium-ion battery anodes. Journal of Power Sources, 2019, 440, 227085.	7.8	12
15	<i>In</i> SituObservation of the Continuous Phase Transition in Determining the High Thermoelectric Performance of Polycrystalline Sn _{0.98} Se. Journal of Physical Chemistry Letters, 2019, 10, 6512-6517.	4.6	32
16	Characterisation of lithium-ion battery anodes fabricated via in-situ Cu6Sn5 growth on a copper current collector. Journal of Power Sources, 2019, 415, 50-61.	7.8	34
17	Temperature dependency of the growth rate of (Cu,Ni)6Sn5 on Cu-xNi substrates. IOP Conference Series: Materials Science and Engineering, 2019, 701, 012007.	0.6	3
18	In Situ Techniques for Developing Robust Li–S Batteries. Small Methods, 2018, 2, 1800133.	8.6	41

#	Article	IF	CITATION
19	Effect of trace Na additions on the hydriding kinetics of hypo-eutectic Mg–Ni alloys. International Journal of Hydrogen Energy, 2017, 42, 6851-6861.	7.1	10
20	Effect of impurity N2 concentration on the hydriding kinetics of Na-doped Mg–Ni alloys. International Journal of Hydrogen Energy, 2017, 42, 366-375.	7.1	2
21	Systems based on hypo-eutectic Mg–Mg2Ni alloys for medium to large scale hydrogen storage and delivery. Journal of Alloys and Compounds, 2013, 580, S329-S332.	5.5	9
22	Cobaltâ€doped Cu ₆ Sn ₅ lithiumâ€ion battery anodes with enhanced electrochemical properties. Nano Select, 0, , .	3.7	2