Adam C Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1466112/publications.pdf Version: 2024-02-01

ADAM C MADTIN

#	Article	IF	CITATIONS
1	Pulsed contractions of an actin–myosin network drive apical constriction. Nature, 2009, 457, 495-499.	13.7	1,089
2	Integration of contractile forces during tissue invagination. Journal of Cell Biology, 2010, 188, 735-749.	2.3	495
3	Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development (Cambridge), 2014, 141, 1987-1998.	1.2	402
4	Apical domain polarization localizes actin–myosin activity to drive ratchet-like apical constriction. Nature Cell Biology, 2013, 15, 926-936.	4.6	224
5	Geometric constraints during epithelial jamming. Nature Physics, 2018, 14, 613-620.	6.5	196
6	Tension, contraction and tissue morphogenesis. Development (Cambridge), 2017, 144, 4249-4260.	1.2	161
7	Pulsation and stabilization: Contractile forces that underlie morphogenesis. Developmental Biology, 2010, 341, 114-125.	0.9	147
8	Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis. Journal of Cell Biology, 2014, 206, 435-450.	2.3	137
9	RhoA GTPase inhibition organizes contraction during epithelial morphogenesis. Journal of Cell Biology, 2016, 214, 603-617.	2.3	134
10	Volume conservation principle involved in cell lengthening and nucleus movement during tissue morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19298-19303.	3.3	127
11	Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nature Communications, 2017, 8, 15014.	5.8	125
12	Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover. Developmental Cell, 2015, 35, 685-697.	3.1	102
13	Mechanical Force Sensing in Tissues. Progress in Molecular Biology and Translational Science, 2014, 126, 317-352.	0.9	86
14	Apical Sarcomere-like Actomyosin Contracts Nonmuscle Drosophila Epithelial Cells. Developmental Cell, 2016, 39, 346-358.	3.1	80
15	Actomyosin-based tissue folding requires a multicellular myosin gradient. Development (Cambridge), 2017, 144, 1876-1886.	1.2	79
16	Intracellular signalling and intercellular coupling coordinate heterogeneous contractile events to facilitate tissue folding. Nature Communications, 2015, 6, 7161.	5.8	69
17	Actin-based force generation and cell adhesion inÂtissue morphogenesis. Current Biology, 2021, 31, R667-R680.	1.8	69
18	Structural Redundancy in Supracellular Actomyosin Networks Enables Robust Tissue Folding. Developmental Cell, 2019, 50, 586-598.e3.	3.1	61

ADAM C MARTIN

#	Article	IF	CITATIONS
19	Actomyosin Pulsing in Tissue Integrity Maintenance during Morphogenesis. Trends in Cell Biology, 2017, 27, 276-283.	3.6	57
20	Drosophila non-muscle myosin II motor activity determines the rate of tissue folding. ELife, 2016, 5, .	2.8	50
21	Myosin 2-Induced Mitotic Rounding Enables Columnar Epithelial Cells to Interpret Cortical Spindle Positioning Cues. Current Biology, 2017, 27, 3350-3358.e3.	1.8	49
22	Force transmission in epithelial tissues. Developmental Dynamics, 2016, 245, 361-371.	0.8	46
23	Microtubules promote intercellular contractile force transmission during tissue folding. Journal of Cell Biology, 2019, 218, 2726-2742.	2.3	40
24	The Physical Mechanisms of <i>Drosophila</i> Gastrulation: Mesoderm and Endoderm Invagination. Genetics, 2020, 214, 543-560.	1.2	38
25	Modular regulation of Rho family GTPases in development. Small GTPases, 2019, 10, 122-129.	0.7	34
26	Combinatorial patterns of graded RhoA activation and uniform F-actin depletion promote tissue curvature. Development (Cambridge), 2021, 148, .	1.2	24
27	Dynamics of hydraulic and contractile wave-mediated fluid transport during <i>Drosophila</i> oogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
28	The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation. Current Topics in Developmental Biology, 2020, 136, 141-165.	1.0	18
29	Loss of G _{α12/13} exacerbates apical area dependence of actomyosin contractility. Molecular Biology of the Cell, 2016, 27, 3526-3536.	0.9	16
30	The nature of cell division forces in epithelial monolayers. Journal of Cell Biology, 2021, 220, .	2.3	15
31	Apical Constriction Reversal upon Mitotic Entry Underlies Different Morphogenetic Outcomes of Cell Division. Molecular Biology of the Cell, 2020, 31, 1663-1674.	0.9	14
32	<i>Drosophila</i> comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton, 2015, 72, 207-224.	1.0	13
33	Abl suppresses cell extrusion and intercalation during epithelium folding. Molecular Biology of the Cell, 2016, 27, 2822-2832.	0.9	12
34	Quantitative analysis of cell shape and the cytoskeleton in developmental biology. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e333.	5.9	8
35	Divergent and combinatorial mechanical strategies that promote epithelial folding during morphogenesis. Current Opinion in Genetics and Development, 2020, 63, 24-29.	1.5	7
36	Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. ELife, 0, 11, .	2.8	6

ADAM C MARTIN

#	Article	IF	CITATIONS
37	Self-organized cytoskeletal alignment during Drosophila mesoderm invagination. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190551.	1.8	3
38	Actomyosin-based tissue folding requires a multicellular myosin gradient. Journal of Cell Science, 2017, 130, e1.2-e1.2.	1.2	3
39	Death drags down the neighbourhood. Nature, 2015, 518, 171-173.	13.7	1
40	Crumbling under Pressure. Developmental Cell, 2015, 33, 122-124.	3.1	1
41	Epithelial Contractility: A Crowning Achievement. Developmental Cell, 2016, 37, 3-4.	3.1	1
42	Extracellular Tension and Tissue Morphogenesis. , 2021, , 317-325.		1
43	ZnUMBA Crosses the Border. Developmental Cell, 2019, 48, 423-424.	3.1	0