
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1466001/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Morphometric Approach to the Solvation Free Energy of Complex Molecules. Physical Review Letters, 2006, 97, 078101.                                                                                     | 2.9 | 143       |
| 2  | A theoretical analysis on hydration thermodynamics of proteins. Journal of Chemical Physics, 2006, 125, 024911.                                                                                         | 1.2 | 139       |
| 3  | Translational-Entropy Gain of Solvent upon Protein Folding. Biophysical Journal, 2005, 89, 2701-2710.                                                                                                   | 0.2 | 138       |
| 4  | Spatial distribution of a depletion potential between a big solute of arbitrary geometry and a big sphere immersed in small spheres. Journal of Chemical Physics, 2002, 116, 3493-3501.                 | 1.2 | 95        |
| 5  | Molecular origin of the hydrophobic effect: Analysis using the angle-dependent integral equation theory. Journal of Chemical Physics, 2008, 128, 024507.                                                | 1.2 | 91        |
| 6  | Thermodynamics of apoplastocyanin folding: Comparison between experimental and theoretical results. Journal of Chemical Physics, 2008, 128, 225104.                                                     | 1.2 | 85        |
| 7  | Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nature Chemical<br>Biology, 2019, 15, 18-26.                                                                       | 3.9 | 85        |
| 8  | Importance of Translational Entropy of Water in Biological Self-Assembly Processes like Protein<br>Folding. International Journal of Molecular Sciences, 2009, 10, 1064-1080.                           | 1.8 | 81        |
| 9  | First-Principle Determination of Peptide Conformations in Solvents:Â Combination of Monte Carlo<br>Simulated Annealing and RISM Theory. Journal of the American Chemical Society, 1998, 120, 1855-1863. | 6.6 | 79        |
| 10 | Analysis of salt effects on solubility of noble gases in water using the reference interaction site model theory. Journal of Chemical Physics, 1997, 106, 5202-5215.                                    | 1.2 | 75        |
| 11 | Theoretical analysis on changes in thermodynamic quantities upon protein folding: Essential role of hydration. Journal of Chemical Physics, 2007, 126, 225102.                                          | 1.2 | 75        |
| 12 | A new theoretical approach to biological self-assembly. Biophysical Reviews, 2013, 5, 283-293.                                                                                                          | 1.5 | 75        |
| 13 | Interaction between macroparticles in Lennardâ€Jones fluids or in hardâ€sphere mixtures. Journal of<br>Chemical Physics, 1996, 105, 7177-7183.                                                          | 1.2 | 74        |
| 14 | Molecular mechanism of pressure denaturation of proteins. Journal of Chemical Physics, 2008, 129, 145103.                                                                                               | 1.2 | 74        |
| 15 | Roles of translational motion of water molecules in sustaining life. Frontiers in Bioscience -<br>Landmark, 2009, Volume, 3419.                                                                         | 3.0 | 68        |
| 16 | Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition. Nucleic Acids Research, 2014, 42, 6861-6875.                          | 6.5 | 68        |
| 17 | Interaction between macroparticles in aqueous electrolytes. Journal of Chemical Physics, 1996, 105, 2487-2499.                                                                                          | 1.2 | 61        |
| 18 | Structural insights into the subtype-selective antagonist binding to the M2 muscarinic receptor.<br>Nature Chemical Biology, 2018, 14, 1150-1158.                                                       | 3.9 | 59        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water. Journal of Chemical Physics, 2015, 142, 145103.           | 1.2 | 53        |
| 20 | Crucial importance of translational entropy of water in pressure denaturation of proteins. Journal of Chemical Physics, 2006, 125, 024910.                                                                                          | 1.2 | 51        |
| 21 | Interaction between surfaces with solvophobicity or solvophilicity immersed in solvent:â€,Effects due<br>to addition of solvophobic or solvophilic solute. Journal of Chemical Physics, 2003, 118, 8969-8981.                       | 1.2 | 49        |
| 22 | Roles of entropic excluded-volume effects in colloidal and biological systems: Analyses using the three-dimensional integral equation theory. Chemical Engineering Science, 2006, 61, 2150-2160.                                    | 1.9 | 48        |
| 23 | Effects of sugars on the thermal stability of a protein. Journal of Chemical Physics, 2013, 138, 245101.                                                                                                                            | 1.2 | 46        |
| 24 | Pressure effects on structures formed by entropically driven self-assembly: Illustration for denaturation of proteins. Physical Review E, 2009, 79, 011912.                                                                         | 0.8 | 45        |
| 25 | Effects of side-chain packing on the formation of secondary structures in protein folding. Journal of<br>Chemical Physics, 2010, 132, 065105.                                                                                       | 1.2 | 43        |
| 26 | Partial Molar Volume and Compressibility of Alkaliâ^'Halide Ions in Aqueous Solution:  Hydration Shell<br>Analysis with an Integral Equation Theory of Molecular Liquids. Journal of Physical Chemistry B, 2002,<br>106, 7308-7314. | 1.2 | 42        |
| 27 | Physical origin of hydrophobicity studied in terms of cold denaturation of proteins: comparison between water and simple fluids. Physical Chemistry Chemical Physics, 2012, 14, 14554.                                              | 1.3 | 42        |
| 28 | Density and orientational structure of water around a hydrophobic solute: effects due to the solute size. Journal of Molecular Liquids, 2005, 119, 47-54.                                                                           | 2.3 | 41        |
| 29 | Peptide Conformations in Alcohol and Water:Â Analyses by the Reference Interaction Site Model Theory. Journal of the American Chemical Society, 2000, 122, 2773-2779.                                                               | 6.6 | 40        |
| 30 | Theoretical analysis on thermal stability of a protein focused on the water entropy. Chemical Physics<br>Letters, 2009, 474, 190-194.                                                                                               | 1.2 | 40        |
| 31 | Calculation of solvation free energy using RISM theory for peptide in salt solution. Journal of Computational Chemistry, 1998, 19, 1724-1735.                                                                                       | 1.5 | 39        |
| 32 | On the physics of pressure denaturation of proteins. Journal of Physics Condensed Matter, 2006, 18, L107-L113.                                                                                                                      | 0.7 | 39        |
| 33 | Molecular origin of the negative heat capacity of hydrophilic hydration. Journal of Chemical Physics, 2009, 130, 144705.                                                                                                            | 1.2 | 39        |
| 34 | Calculation of hydration free energy for a solute with many atomic sites using the RISM theory: A robust and efficient algorithm. , 1997, 18, 1320-1326.                                                                            |     | 38        |
| 35 | Pair-correlation entropy of hydrophobic hydration: Decomposition into translational and orientational contributions and analysis of solute-size effects. Journal of Chemical Physics, 2006, 124, 024512.                            | 1.2 | 38        |
| 36 | Depletion potential between large spheres immersed in a multicomponent mixture of small spheres.<br>Journal of Chemical Physics, 2006, 125, 084910.                                                                                 | 1.2 | 37        |

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of heme on the thermal stability of mesophilic and thermophilic cytochromes <i>c</i> :<br>Comparison between experimental and theoretical results. Journal of Chemical Physics, 2011, 134,<br>025101.                                                                     | 1.2 | 35        |
| 38 | Potential of Mean Force between Solute Atoms in Salt Solution: Effects Due to Salt Species and<br>Relevance to Conformational Transition of Biomolecules. Bulletin of the Chemical Society of Japan,<br>2005, 78, 1431-1441.                                                      | 2.0 | 34        |
| 39 | A statistical-mechanical analysis on the hypermobile water around a large solute with high surface charge density. Journal of Chemical Physics, 2009, 130, 014707.                                                                                                                | 1.2 | 33        |
| 40 | Freeâ€energy function based on an allâ€atom model for proteins. Proteins: Structure, Function and<br>Bioinformatics, 2009, 77, 950-961.                                                                                                                                           | 1.5 | 32        |
| 41 | Structural stability of proteins in aqueous and nonpolar environments. Journal of Chemical Physics, 2012, 137, 135103.                                                                                                                                                            | 1.2 | 30        |
| 42 | Hydration structure and stability of Met-enkephalin studied by a three-dimensional reference<br>interaction site model with a repulsive bridge correction and a thermodynamic perturbation method.<br>Journal of Chemical Physics, 2000, 113, 9830-9836.                          | 1.2 | 29        |
| 43 | Water Structure and Phase Transition Near a Surface. Journal of Solution Chemistry, 2004, 33, 661-687.                                                                                                                                                                            | 0.6 | 29        |
| 44 | Hot-Spot Residues to be Mutated Common in G Protein-Coupled Receptors of Class A: Identification of<br>Thermostabilizing Mutations Followed by Determination of Three-Dimensional Structures for Two<br>Example Receptors. Journal of Physical Chemistry B, 2017, 121, 6341-6350. | 1.2 | 29        |
| 45 | Freeâ€energy function for discriminating the native fold of a protein from misfolded decoys. Proteins:<br>Structure, Function and Bioinformatics, 2011, 79, 2161-2171.                                                                                                            | 1.5 | 28        |
| 46 | Evaluation of proteinâ€ligand binding free energy focused on its entropic components. Journal of<br>Computational Chemistry, 2012, 33, 550-560.                                                                                                                                   | 1.5 | 26        |
| 47 | Identification of Thermostabilizing Mutations for Membrane Proteins: Rapid Method Based on<br>Statistical Thermodynamics. Journal of Physical Chemistry B, 2016, 120, 3833-3843.                                                                                                  | 1.2 | 25        |
| 48 | Interaction between large spheres immersed in small spheres: remarkable effects due to a trace amount of medium-sized spheres. Chemical Physics Letters, 2002, 353, 259-269.                                                                                                      | 1.2 | 24        |
| 49 | Remarkable Solvent Effects on Depletion Interaction in Crowding Media: Analyses Using the Integral<br>Equation Theories. Journal of the Physical Society of Japan, 2006, 75, 064804.                                                                                              | 0.7 | 24        |
| 50 | Entropic insertion of a big sphere into a cylindrical vessel. Chemical Physics Letters, 2010, 488, 1-6.                                                                                                                                                                           | 1.2 | 24        |
| 51 | Percolation Phenomenon for Dissolution of Sodium Borosilicate Glasses in Aqueous Solutions.<br>Journal of the American Ceramic Society, 1991, 74, 783-787.                                                                                                                        | 1.9 | 23        |
| 52 | High-Rate Charging of Zinc Anodes Achieved by Tuning Hydration Properties of Zinc Complexes in<br>Water Confined within Nanopores. Journal of Physical Chemistry C, 2016, 120, 24112-24120.                                                                                       | 1.5 | 23        |
| 53 | Universal effects of solvent species on the stabilized structure of a protein. Journal of Chemical Physics, 2018, 149, 045105.                                                                                                                                                    | 1.2 | 22        |
| 54 | Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein. Journal of Chemical Physics, 2017, 146, 055102.                                                                                       | 1.2 | 21        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Unraveling protein folding mechanism by analyzing the hierarchy of models with increasing level of detail. Journal of Chemical Physics, 2017, 147, 125102.                                                                      | 1.2 | 21        |
| 56 | Crucial importance of the water-entropy effect in predicting hot spots in protein–protein complexes.<br>Physical Chemistry Chemical Physics, 2011, 13, 16236.                                                                   | 1.3 | 20        |
| 57 | Mechanism of One-to-Many Molecular Recognition Accompanying Target-Dependent Structure<br>Formation: For the Tumor Suppressor p53 Protein as an Example. Journal of Physical Chemistry B, 2015,<br>119, 14120-14129.            | 1.2 | 20        |
| 58 | An accurate and rapid method for calculating hydration free energies of a variety of solutes including proteins. Journal of Chemical Physics, 2019, 150, 175101.                                                                | 1.2 | 20        |
| 59 | Mechanism of globule-to-coil transition of poly(N-isopropylacrylamide) in water: Relevance to cold denaturation of a protein. Journal of Molecular Liquids, 2019, 292, 111374.                                                  | 2.3 | 20        |
| 60 | Potential of mean force between a large solute and a biomolecular complex: A model analysis on protein flux through chaperonin system. Journal of Chemical Physics, 2011, 135, 185101.                                          | 1.2 | 18        |
| 61 | Identification of thermostabilizing mutations for a membrane protein whose threeâ€dimensional structure is unknown. Journal of Computational Chemistry, 2017, 38, 211-223.                                                      | 1.5 | 18        |
| 62 | Three-Dimensional Density Profiles of Small and Medium Spheres near a Pair of Large Spheres:<br>Relevance to Entropic Interaction Induced between Large Spheres. Journal of the Physical Society of<br>Japan, 2009, 78, 044801. | 0.7 | 17        |
| 63 | Morphometric approach to thermodynamic quantities of solvation of complex molecules: Extension to multicomponent solvent. Journal of Chemical Physics, 2011, 135, 045103.                                                       | 1.2 | 17        |
| 64 | Effects of monohydric alcohols and polyols on the thermal stability of a protein. Journal of Chemical Physics, 2016, 144, 125105.                                                                                               | 1.2 | 16        |
| 65 | Unified elucidation of the entropy-driven and -opposed hydrophobic effects. Physical Chemistry<br>Chemical Physics, 2017, 19, 25891-25904.                                                                                      | 1.3 | 16        |
| 66 | How Does a Microbial Rhodopsin RxR Realize Its Exceptionally High Thermostability with the<br>Proton-Pumping Function Being Retained?. Journal of Physical Chemistry B, 2020, 124, 990-1000.                                    | 1.2 | 15        |
| 67 | Penetration of Platinum Complex Anions into Porous Silicon: Anomalous Behavior Caused by Surface-Induced Phase Transition. Journal of Physical Chemistry C, 2015, 119, 19105-19116.                                             | 1.5 | 14        |
| 68 | Water based on a molecular model behaves like a hard-sphere solvent for a nonpolar solute when the reference interaction site model and related theories are employed. Journal of Physics Condensed Matter, 2016, 28, 344003.   | 0.7 | 14        |
| 69 | Statistical Thermodynamics for Actin-Myosin Binding: The Crucial Importance of Hydration Effects.<br>Biophysical Journal, 2016, 110, 2496-2506.                                                                                 | 0.2 | 14        |
| 70 | Hydration properties of a protein at low and high pressures: Physics of pressure denaturation.<br>Journal of Chemical Physics, 2020, 152, 065103.                                                                               | 1.2 | 14        |
| 71 | Interaction between macroparticles in a simple model system of a nonpolar liquid containing trace amounts of water. Journal of Chemical Physics, 1996, 105, 7184-7191.                                                          | 1.2 | 13        |
| 72 | Development and structural determination of an anti-PrPC aptamer that blocks pathological conformational conversion of prion protein. Scientific Reports, 2020, 10, 4934.                                                       | 1.6 | 13        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | On the physics of thermal-stability changes upon mutations of a protein. Journal of Chemical Physics, 2015, 143, 125102.                                                                                                      | 1.2 | 12        |
| 74 | Physical origins of remarkable thermostabilization by an octuple mutation for the adenosine A2a receptor. Chemical Physics Letters, 2016, 657, 119-123.                                                                       | 1.2 | 12        |
| 75 | Mechanism of protein–RNA recognition: analysis based on the statistical mechanics of hydration.<br>Physical Chemistry Chemical Physics, 2018, 20, 9167-9180.                                                                  | 1.3 | 12        |
| 76 | Enhanced enzymatic activity exerted by a packed assembly of a single type of enzyme. Chemical Science, 2020, 11, 9088-9100.                                                                                                   | 3.7 | 12        |
| 77 | Evaluation of the role of the DNA surface for enhancing the activity of scaffolded enzymes. Chemical Communications, 2021, 57, 3925-3928.                                                                                     | 2.2 | 12        |
| 78 | Methodology of predicting approximate shapes and size distribution of micelles: Illustration for simple models. Journal of Computational Chemistry, 2002, 23, 1445-1455.                                                      | 1.5 | 11        |
| 79 | Model of insertion and release of a large solute into and from a biopolymer complex. Chemical Physics Letters, 2011, 504, 221-224.                                                                                            | 1.2 | 11        |
| 80 | Physicochemical origin of high correlation between thermal stability of a protein and its packing<br>efficiency: a theoretical study for staphylococcal nuclease mutants. Biophysics and Physicobiology,<br>2015, 12, 1-12.   | 0.5 | 11        |
| 81 | Effect of cation species on surface-induced phase transition observed for platinum complex anions in platinum electrodeposition using nanoporous silicon. Journal of Chemical Physics, 2014, 141, 074701.                     | 1.2 | 10        |
| 82 | How Does the Recently Discovered Peptide MIP Exhibit Much Higher Binding Affinity than an<br>Anticancer Protein p53 for an Oncoprotein MDM2?. Journal of Chemical Information and Modeling,<br>2019, 59, 3533-3544.           | 2.5 | 10        |
| 83 | Comparison based on statistical thermodynamics between globule-to-coil transition of poly(N-isopropylacrylamide) and cold denaturation of a protein. Journal of Molecular Liquids, 2020, 317, 114129.                         | 2.3 | 10        |
| 84 | Fractal-like behavior of a mass-transport process. AICHE Journal, 1997, 43, 2187-2193.                                                                                                                                        | 1.8 | 9         |
| 85 | On the physics of multidrug efflux through a biomolecular complex. Journal of Chemical Physics, 2013, 139, 205102.                                                                                                            | 1.2 | 9         |
| 86 | Entropic release of a big sphere from a cylindrical vessel. Chemical Physics Letters, 2013, 561-562, 159-165.                                                                                                                 | 1.2 | 9         |
| 87 | Analyses based on statistical thermodynamics for large difference between thermophilic rhodopsin<br>and xanthorhodopsin in terms of thermostability. Journal of Chemical Physics, 2019, 150, 055101.                          | 1.2 | 9         |
| 88 | Physical Origin of Thermostabilization by a Quadruple Mutation for the Adenosine A <sub>2a</sub><br>Receptor in the Active State. Journal of Physical Chemistry B, 2018, 122, 4418-4427.                                      | 1.2 | 8         |
| 89 | Reduced density profile of small particles near a large particle: Results of an integral equation theory<br>with an accurate bridge function and a Monte Carlo simulation. Journal of Chemical Physics, 2019, 151,<br>044506. | 1.2 | 8         |
| 90 | Accurate and rapid calculation of hydration free energy and its physical implication for biomolecular functions. Biophysical Reviews, 2020, 12, 469-480.                                                                      | 1.5 | 8         |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Elucidation of cosolvent effects thermostabilizing water-soluble and membrane proteins. Journal of<br>Molecular Liquids, 2020, 301, 112403.                                                                                                  | 2.3 | 7         |
| 92  | Development of an Outward Proton Pumping Rhodopsin with a New Record in Thermostability by<br>Means of Amino Acid Mutations. Journal of Physical Chemistry B, 2022, 126, 1004-1015.                                                          | 1.2 | 7         |
| 93  | Fractal-like behavior observed for a mass-transport process. AICHE Journal, 1992, 38, 1667-1670.                                                                                                                                             | 1.8 | 6         |
| 94  | Interaction between solute molecules in medium density solvents. Molecular Physics, 2000, 98, 725-736.                                                                                                                                       | 0.8 | 6         |
| 95  | Characterization of Experimentally Determined Native-Structure Models of a Protein Using Energetic<br>and Entropic Components of Free-Energy Function. Journal of Physical Chemistry B, 2012, 116, 7776-7786.                                | 1.2 | 6         |
| 96  | An accurate and efficient computation method of the hydration free energy of a large, complex molecule. Journal of Chemical Physics, 2015, 142, 175101.                                                                                      | 1.2 | 6         |
| 97  | A highly efficient hybrid method for calculating the hydration free energy of a protein. Journal of Computational Chemistry, 2016, 37, 712-723.                                                                                              | 1.5 | 6         |
| 98  | Physical origins of the high structural stability of CLN025 with only ten residues. Journal of Chemical Physics, 2014, 141, 105103.                                                                                                          | 1.2 | 5         |
| 99  | Changes in hydrophobic and hydrophilic hydration properties caused by raising the pressure or by lowering the temperature. Chemical Physics Letters, 2014, 610-611, 1-7.                                                                     | 1.2 | 5         |
| 100 | Statistical thermodynamics of aromatic–aromatic interactions in aqueous solution. Physical<br>Chemistry Chemical Physics, 2016, 18, 32406-32417.                                                                                             | 1.3 | 5         |
| 101 | Entropic enrichment of cosolvent near a very large solute immersed in solvent-cosolvent binary<br>mixture: Anomalous dependence on bulk cosolvent concentration. Journal of Molecular Liquids, 2017,<br>247, 403-410.                        | 2.3 | 5         |
| 102 | Statistical thermodynamics for the unexpectedly large difference between disaccharide<br>stereoisomers in terms of solubility in water. Physical Chemistry Chemical Physics, 2018, 20,<br>23684-23693.                                       | 1.3 | 5         |
| 103 | Methodology for Further Thermostabilization of an Intrinsically Thermostable Membrane Protein<br>Using Amino Acid Mutations with Its Original Function Being Retained. Journal of Chemical<br>Information and Modeling, 2020, 60, 1709-1716. | 2.5 | 5         |
| 104 | Theoretical identification of thermostabilizing amino acid mutations for G-protein-coupled receptors. Biophysical Reviews, 2020, 12, 323-332.                                                                                                | 1.5 | 5         |
| 105 | Dynamics of the entropic insertion of a large sphere into a cylindrical vessel. Journal of Chemical Physics, 2016, 144, 105103.                                                                                                              | 1.2 | 4         |
| 106 | Solvent Effects on Formation of Tertiary Structure of Protein. Seibutsu Butsuri, 2000, 40, 374-378.                                                                                                                                          | 0.0 | 4         |
| 107 | On the functioning mechanism of an ATP-driven molecular motor. Biophysics and Physicobiology, 2021, 18, 60-66.                                                                                                                               | 0.5 | 2         |
| 108 | Controlling the Rigidity of Kinesin-Propelled Microtubules in an <i>In Vitro</i> Gliding Assay Using the Deep-Sea Osmolyte Trimethylamine <i>N</i> -Oxide. ACS Omega, 2022, 7, 3796-3803.                                                    | 1.6 | 2         |

MASAHIRO KINOSHITA

| #   | Article                                                                                                                                                                                                                               | IF                | CITATIONS      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 109 | A Simple Theory for Entropic Interaction Induced between Large Spheres in a Binary Mixture of Small and Medium Spheres. Journal of the Physical Society of Japan, 2011, 80, 114802.                                                   | 0.7               | 1              |
| 110 | A scoring function based on solvation thermodynamics for protein structure prediction. Biophysics (Nagoya-shi, Japan), 2012, 8, 127-138.                                                                                              | 0.4               | 1              |
| 111 | Theoretical Analysis on the Metal-Aqueous Electroyte Solution Interface Hyomen Kagaku, 1999, 20, 288-294.                                                                                                                             | 0.0               | 1              |
| 112 | Analysis on Fractal-Like Behaviour Expected for Migration of Radionuclides in Geologic Sorbing<br>Media. Journal of Nuclear Science and Technology, 1998, 35, 40-48.                                                                  | 0.7               | 0              |
| 113 | 1P-011 Parameters related to intramolecular hydrogen bonds characterizing the protein native structure(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S22.                                 | 0.0               | 0              |
| 114 | 1P-070 Thermodynamics of apoplastocyamn folding : Comparison between experimental and theoretical<br>results(Invited Talk for Early Research in Biophysics Award,Early Research in Biophysics Award)(The) Tj ETQq0 0 0                | rgBT0/Ov€         | erlock 10 Tf 5 |
| 115 | 1P-079 Analysis on thermal stability of a protein focused on water entropy(The 46th Annual Meeting of) Tj ETQq                                                                                                                        | 1 1 0.784:<br>0.0 | 314 rgBT /Ov   |
| 116 | 2P-038 Evaluation of multiphysics methodologies for the calculation of ligand-protein binding free<br>energy(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S81.                           | 0.0               | 0              |
| 117 | 3P-115 A theoretical analysis on the hyper-mobile water molecules near a solute(The 46th Annual) Tj ETQq1 1 0.7                                                                                                                       | 784314 rg<br>0.0  | BT/Overlock    |
| 118 | 1P-046 Pressure effect on helix-coil transition of an alanine -based peptide : Statistical-mechanical<br>analysis(Protein:Property, The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu<br>Butsuri, 2009, 49, S70. | 0.0               | 0              |
| 119 | 2P-055 New computational method for protein-ligand binding affinities focused on water<br>entropy(Protein:Property,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu<br>Butsuri, 2009, 49, S115.                 | 0.0               | 0              |
| 120 | 1P-045 A Theoretical Analysis on Characteristics of Protein Structures Induced by Cold<br>Denaturation(Protein:Property, The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu<br>Butsuri, 2009, 49, S70.            | 0.0               | 0              |
| 121 | 1P-047 Roles of side-chain packing in the formation of secondary structures of a<br>protein(Protein:Property, The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu<br>Butsuri, 2009, 49, S70.                       | 0.0               | 0              |
| 122 | 1P-127 Entropic potential field formed for a linear-motor protein near a filament : Simple model<br>calculation I(Molecular motor, The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu<br>Butsuri, 2009, 49, S83.  | 0.0               | 0              |
| 123 | 1P-048 Crucial importance of water-entropy effect in thermal stability of proteins(Protein:Property,) Tj ETQq1 1 C                                                                                                                    | ).784314<br>0.0   | rgBT /Overlo   |
| 124 | 3P077 Refinement of Modeled Protein Structure by Replica Exchange Molecular Dynamics and<br>Hydration Entropy based Scoring Function(Protein: Property,The 48th Annual Meeting of the) Tj ETQq0 0 0 rgBT                              | /Overlock         | 1@Tf 50 137    |
| 125 | 1P073 Development of a free-energy function toward predicting the native structure of a protein(Protein:Property,The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S32.                       | 0.0               | 0              |
| 126 | 1P049 Import and export of a solute using solvation effects : a study on chaperonin<br>GroEL(Protein:Property,The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri,<br>2010, 50, S27.                       | 0.0               | 0              |

| #   | Article                                                                                                                                                                                                                                          | IF                  | CITATIONS         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
| 127 | 1P062 Theoretical Prediction of Hot Spots in Protein-Protein Complexes(Protein:Property,The 48th) Tj ETQq1 1 0.                                                                                                                                  | 784314 r<br>0.0     | gBT /Overloc      |
| 128 | 1P111 Effects of heme on the thermal stability of cytochromes c : Comparison between experimental<br>and theoretical results(Heme proteins,The 48th Annual Meeting of the Biophysical Society of Japan).<br>Seibutsu Butsuri, 2010, 50, S38-S39. | 0.0                 | 0                 |
| 129 | 1P186 1YA1115 Crucial importance of translational entropy of water in rotation mechanism of F1-ATPase(Molecular motor,Early Research in Biophysics Award Candidate Presentations,Early) Tj ETQq1 1 0.7843<br>Butsuri, 2010. 50. S52.             | 14 rgBT /<br>0.0    | Overlock 10       |
| 130 | 1L1536 A theoretical analysis on water-entropy change in yeast F_1-ATPase during 16 degrees rotation of gamma subunit(Molecular motor 1,The 49th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2011, 51, S62.           | 0.0                 | 0                 |
| 131 | 1H1436 Crucial Importance of Water-Entropy Effect for Hot Spots in Protein-Protein<br>Complexes(Protein: Property 2,The 49th Annual Meeting of the Biophysical Society of Japan). Seibutsu<br>Butsuri, 2011, 51, S49.                            | 0.0                 | 0                 |
| 132 | 1SG-06 Cooperative Roles of Water and ATP in Functioning of ATP-Driven Proteins(1SG) Tj ETQq0 0 0 rgBT /Overl<br>Seibutsu Butsuri, 2011, 51, S6.                                                                                                 | ock 10 Tf<br>0.0    | 50 547 Td (/<br>0 |
| 133 | 1PT154 Structural stability of a protein in aqueous and nonaqueous environments(The 50th Annual) Tj ETQq1 1 C                                                                                                                                    | ).784314<br>0.0     | rgBT /Overlo      |
| 134 | 3PT116 Entropic release of a big sphere from a cylindrical vessel(The 50th Annual Meeting of the) Tj ETQq0 0 0 rg                                                                                                                                | BT /Overl           | ock 10 Tf 50      |
| 135 | 1PT137 Effects of sugars on the thermal stability of proteins(The 50th Annual Meeting of the) Tj ETQq1 1 0.7843                                                                                                                                  | 14 rgBT /(<br>0.0   | Overlock 10       |
| 136 | 3P114 Statistical Thermodynamics for Binding of an RNA Aptamer and a Partial Peptide of a Prion<br>Protein(04. Nucleic acid binding proteins,Poster). Seibutsu Butsuri, 2013, 53, S230.                                                          | 0.0                 | 0                 |
| 137 | 3P109 Theoretical Enhancement of Structural Stability of a Membrane Protein for X-ray<br>Crystallography(03. Membrane proteins,Poster). Seibutsu Butsuri, 2013, 53, S230.                                                                        | 0.0                 | 0                 |
| 138 | 2P004 Statistical thermodynamics of one-to-many molecular recognition accompanied by partner-dependent folding : in the case of p53 protein(01A. Protein:Structure,Poster,The 52nd Annual) Tj ETQq0 (                                            | ) <b>0.</b> ngBT /( | Oværlock 10       |
| 139 | Molecular Machines. Springer Briefs in Molecular Science, 2016, , 21-61.                                                                                                                                                                         | 0.1                 | 0                 |
| 140 | Theoretical Analysis on Hyper-mobile Water Around a Solute. Hyomen Kagaku, 2009, 30, 157-161.                                                                                                                                                    | 0.0                 | 0                 |
| 141 | Revolutionary Protein Hydration Theory I. Beyond the Asakura-Oosawa Theory. Seibutsu Butsuri, 2012, 52, 203-205.                                                                                                                                 | 0.0                 | 0                 |
| 142 | Revolutionary Protein Hydration Theory III. Theoretical Examination. Seibutsu Butsuri, 2012, 52, 300-303.                                                                                                                                        | 0.0                 | 0                 |
| 143 | Evolutionary Protein Hydration Theory II. Practical Applications of New Theory. Seibutsu Butsuri, 2012, 52, 250-253.                                                                                                                             | 0.0                 | 0                 |
| 144 | Appendix 1: Angle-Dependent Integral Equation Theory. Springer Briefs in Molecular Science, 2021, ,<br>71-75.                                                                                                                                    | 0.1                 | 0                 |

| #   | Article                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Appendix 2: Morphometric Approach. Springer Briefs in Molecular Science, 2021, , 77-79.                                                   | 0.1 | 0         |
| 146 | A New View on Mechanism of Functional Expression of an ATP-Driven Molecular Motor. Springer<br>Briefs in Molecular Science, 2021, , 5-28. | 0.1 | 0         |