Donald A Cowan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differences in Precipitation Regime Shape Microbial Community Composition and Functional Potential in Namib Desert Soils. Microbial Ecology, 2022, 83, 689-701.	2.8	18
2	Novel lichen-dominated hypolithic communities in the Namib Desert. Microbial Ecology, 2022, 83, 1036-1048.	2.8	5
3	Out of Thin Air? Astrobiology and Atmospheric Chemotrophy. Astrobiology, 2022, , .	3.0	5
4	The ecological assembly of bacterial communities in Antarctic wetlands varies across levels of phylogenetic resolution. Environmental Microbiology, 2022, , .	3.8	1
5	Polar soils exhibit distinct patterns in microbial diversity and dominant phylotypes. Soil Biology and Biochemistry, 2022, 166, 108550.	8.8	19
6	Microbial Biogeochemical Cycling of Nitrogen in Arid Ecosystems. Microbiology and Molecular Biology Reviews, 2022, 86, e0010921.	6.6	22
7	The lung microbiome in HIV-positive patients with active pulmonary tuberculosis. Scientific Reports, 2022, 12, .	3.3	5
8	The plant rhizosheath–root niche is an edaphic "mini-oasis―in hyperarid deserts with enhanced microbial competition. ISME Communications, 2022, 2, .	4.2	18
9	Pollution shapes the microbial communities in river water and sediments from the Olifants River catchment, South Africa. Archives of Microbiology, 2021, 203, 295-303.	2.2	3
10	Foliar fungi of the enigmatic desert plant Welwitschia mirabilis show little adaptation to their unique host plant. South African Journal of Science, 2021, 117, .	0.7	2
11	Gone with the Wind: Microbial Communities Associated with Dust from Emissive Farmlands. Microbial Ecology, 2021, 82, 859-869.	2.8	9
12	Subâ€lithic photosynthesis in hot desert habitats. Environmental Microbiology, 2021, 23, 3867-3880.	3.8	10
13	Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps). Microbial Genomics, 2021, 7, .	2.0	7
14	Diversity structure of the microbial communities in the guts of four neotropical termite species. PeerJ, 2021, 9, e10959.	2.0	14
15	Genomic characterization of a polyvalent hydrocarbonoclastic bacterium Pseudomonas sp. strain BUN14. Scientific Reports, 2021, 11, 8124.	3.3	9
16	Microbial anhydrobiosis. Environmental Microbiology, 2021, 23, 6377-6390.	3.8	19
17	The Rhizobial Microbiome from the Tropical Savannah Zones in Northern CÑte d'Ivoire. Microorganisms, 2021, 9, 1842.	3.6	7
18	Microbial characterisation and Cold-Adapted Predicted Protein (CAPP) database construction from the active layer of Greenland's permafrost. FEMS Microbiology Ecology, 2021, 97, .	2.7	2

#	Article	IF	CITATIONS
19	The soil microbiomics of intact, degraded and partially-restored semi-arid succulent thicket (Albany) Tj ETQq1	1 0.784314 2.0	rgBT /Overlo
20	Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	68
21	Editorial: Thematic issue on polar and alpine microbiology. FEMS Microbiology Ecology, 2020, 96, .	2.7	1
22	Microbial Nitrogen Cycling in Antarctic Soils. Microorganisms, 2020, 8, 1442.	3.6	25
23	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	12.8	192
24	Islands in the sand: are all hypolithic microbial communities the same?. FEMS Microbiology Ecology, 2020, 97, .	2.7	4
25	Genetic diversity of soil invertebrates corroborates timing estimates for past collapses of the West Antarctic Ice Sheet. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22293-22302.	7.1	29
26	Hydrogen-Oxidizing Bacteria Are Abundant in Desert Soils and Strongly Stimulated by Hydration. MSystems, 2020, 5, .	3.8	38
27	Multi-proxy analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the â€~ancestral' sub-Saharan African intestinal microbiome. Microbiome, 2020, 8, 62.	11.1	14
28	Phages Actively Challenge Niche Communities in Antarctic Soils. MSystems, 2020, 5, .	3.8	17
29	Time-course Transcriptome of Parageobacillus thermoglucosidasius DSM 6285 Grown in the Presence of Carbon Monoxide and Air. International Journal of Molecular Sciences, 2020, 21, 3870.	4.1	6
30	Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils. Environmental Microbiology, 2020, 22, 2261-2272.	3.8	77
31	A clinically important, plasmid-borne antibiotic resistance gene (β-lactamase TEM-116) present in desert soils. Science of the Total Environment, 2020, 719, 137497.	8.0	14
32	Increased temperatures alter viable microbial biomass, ammonia oxidizing bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiology Ecology, 2020, 96, .	2.7	13
33	Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems. MSystems, 2020, 5, .	3.8	66
34	The Functional Potential of the Rhizospheric Microbiome of an Invasive Tree Species, Acacia dealbata. Microbial Ecology, 2019, 77, 191-200.	2.8	46
35	Characterization and homology modelling of a novel multi-modular and multi-functional Paenibacillus mucilaginosus glycoside hydrolase. Extremophiles, 2019, 23, 681-686.	2.3	1
36	The genome of Alcaligenes aquatilis strain BU33N: Insights into hydrocarbon degradation capacity. PLoS ONE, 2019, 14, e0221574.	2.5	19

#	Article	IF	CITATIONS
37	Nutrient Acquisition, Rather Than Stress Response Over Diel Cycles, Drives Microbial Transcription in a Hyper-Arid Namib Desert Soil. Frontiers in Microbiology, 2019, 10, 1054.	3.5	37
38	Ancient landscapes of the Namib Desert harbor high levels of genetic variability and deeply divergent lineages for Collembola. Ecology and Evolution, 2019, 9, 4969-4979.	1.9	10
39	The Healthy Human Blood Microbiome: Fact or Fiction?. Frontiers in Cellular and Infection Microbiology, 2019, 9, 148.	3.9	221
40	Differences in Bacterial Diversity, Composition and Function due to Long-Term Agriculture in Soils in the Eastern Free State of South Africa. Diversity, 2019, 11, 61.	1.7	50
41	Airborne microbial transport limitation to isolated Antarctic soil habitats. Nature Microbiology, 2019, 4, 925-932.	13.3	114
42	Genomics of Alkaliphiles. Advances in Biochemical Engineering/Biotechnology, 2019, 172, 135-155.	1.1	2
43	Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Communications Biology, 2019, 2, 62.	4.4	42
44	5. Metagenomics of extreme environments: methods and applications. , 2019, , 93-126.		0
45	Reorganising the order Bacillales through phylogenomics. Systematic and Applied Microbiology, 2019, 42, 178-189.	2.8	11
46	Role of Cyanobacteria in the Ecology of Polar Environments. Springer Polar Sciences, 2019, , 3-23.	0.1	11
47	Trophic Selective Pressures Organize the Composition of Endolithic Microbial Communities From Global Deserts. Frontiers in Microbiology, 2019, 10, 2952.	3.5	26
48	Effects of different operating parameters on hydrogen production by Parageobacillus thermoglucosidasius DSM 6285. AMB Express, 2019, 9, 207.	3.0	12
49	From Antarctic DNA to stress tolerant crop plants – exploiting the why protein domain. Access Microbiology, 2019, 1, .	0.5	0
50	Structural Characterization and Directed Evolution of a Novel Acetyl Xylan Esterase Reveals Thermostability Determinants of the Carbohydrate Esterase 7 Family. Applied and Environmental Microbiology, 2018, 84, .	3.1	18
51	Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation. Science of the Total Environment, 2018, 624, 530-539.	8.0	69
52	Exploring Viral Diversity in a Unique South African Soil Habitat. Scientific Reports, 2018, 8, 111.	3.3	23
53	Namib Desert primary productivity is driven by cryptic microbial community N-fixation. Scientific Reports, 2018, 8, 6921.	3.3	33
54	Namib Desert Soil Microbial Community Diversity, Assembly, and Function Along a Natural Xeric Gradient. Microbial Ecology, 2018, 75, 193-203.	2.8	60

#	Article	IF	CITATIONS
55	Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles, 2018, 22, 1-12.	2.3	14
56	Comparative genomic analysis of Parageobacillus thermoglucosidasius strains with distinct hydrogenogenic capacities. BMC Genomics, 2018, 19, 880.	2.8	20
57	Arable agriculture changes soil microbial communities in the South African Grassland Biome. South African Journal of Science, 2018, 114, .	0.7	8
58	In silico characterization of the global Geobacillus and Parageobacillus secretome. Microbial Cell Factories, 2018, 17, 156.	4.0	9
59	Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome, 2018, 6, 215.	11.1	122
60	LEA Proteins and the Evolution of the WHy Domain. Applied and Environmental Microbiology, 2018, 84,	3.1	48
61	å\$æ°—ã₽微釿ˆå^†ã∙ã,‰ã,¨āf∎f«ã,®ãf¼ã,'å¾—ã,‹å⊷極ã₽微生物. Nature Digest, 2018, 15, 34-36.	0.0	0
62	CO-dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius. Microbial Cell Factories, 2018, 17, 108.	4.0	37
63	Agulhas Current properties shape microbial community diversity and potential functionality. Scientific Reports, 2018, 8, 10542.	3.3	12
64	A reservoir of â€~historical' antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 2018, 6, 40.	11.1	244
65	Temporal shifts of fungal communities in the rhizosphere and on tubers in potato fields. Fungal Biology, 2018, 122, 928-934.	2.5	33
66	Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters. Extremophiles, 2017, 21, 381-392.	2.3	30
67	Xerotolerant bacteria: surviving through a dry spell. Nature Reviews Microbiology, 2017, 15, 285-296.	28.6	208
68	Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Scientific Reports, 2017, 7, 40189.	3.3	42
69	Liquid Phase Multiplex High-Throughput Screening of Metagenomic Libraries Using p-Nitrophenyl-Linked Substrates for Accessory Lignocellulosic Enzymes. Methods in Molecular Biology, 2017, 1539, 219-228.	0.9	3
70	Metaviromes of Extracellular Soil Viruses along a Namib Desert Aridity Gradient. Genome Announcements, 2017, 5, .	0.8	18
71	In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion. Scientific Reports, 2017, 7, 11462.	3.3	16
72	Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Scientific Reports, 2017, 7, 6472.	3.3	54

#	Article	IF	CITATIONS
73	Evidence of microbial rhodopsins in <scp>A</scp> ntarctic <scp>D</scp> ry <scp>V</scp> alley edaphic systems. Environmental Microbiology, 2017, 19, 3755-3767.	3.8	17
74	4. Microbiology of Antarctic Edaphic and Lithic Habitats. , 2017, , 47-72.		2
75	Phylogenomic, Pan-genomic, Pathogenomic and Evolutionary Genomic Insights into the Agronomically Relevant Enterobacteria Pantoea ananatis and Pantoea stewartii. Frontiers in Microbiology, 2017, 8, 1755.	3.5	20
76	Advanced Photogrammetry to Assess Lichen Colonization in the Hyper-Arid Namib Desert. Frontiers in Microbiology, 2017, 8, 2083.	3.5	9
77	Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities. Frontiers in Microbiology, 2017, 8, 2099.	3.5	36
78	Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome, 2017, 5, 83.	11.1	94
79	Energy from thin air. Nature, 2017, 552, 336-337.	27.8	4
80	Metagenomic Analysis of Low-Temperature Environments. , 2017, , 389-421.		4
81	Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses. Viruses, 2016, 8, 14.	3.3	24
82	The Geobacillus Pan-Genome: Implications for the Evolution of the Genus. Frontiers in Microbiology, 2016, 7, 723.	3.5	20
83	Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil. PLoS ONE, 2016, 11, e0153353.	2.5	41
84	Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environmental Microbiology, 2016, 18, 1875-1888.	3.8	96
85	Comparative genomic analysis of the flagellin glycosylation island of the Gram-positive thermophile Geobacillus. BMC Genomics, 2016, 17, 913.	2.8	10
86	Unique Microbial Phylotypes in Namib Desert Dune and Gravel Plain Fairy Circle Soils. Applied and Environmental Microbiology, 2016, 82, 4592-4601.	3.1	25
87	Plants of the fynbos biome harbour host species-specific bacterial communities. FEMS Microbiology Letters, 2016, 363, fnw122.	1.8	16
88	Comparative Metagenomic Analysis Reveals Mechanisms for Stress Response in Hypoliths from Extreme Hyperarid Deserts. Genome Biology and Evolution, 2016, 8, 2737-2747.	2.5	61
89	Phylogenomic re-assessment of the thermophilic genus Geobacillus. Systematic and Applied Microbiology, 2016, 39, 527-533.	2.8	116
90	Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme and Microbial Technology, 2016, 93-94, 79-91.	3.2	54

#	Article	IF	CITATIONS
91	Genetic diversity among populations of Antarctic springtails (Collembola) within the Mackay Glacier ecotone. Genome, 2016, 59, 762-770.	2.0	13
92	Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Scientific Reports, 2016, 6, 34434.	3.3	74
93	Draft genome sequence of Thermoactinomyces sp. strain AS95 isolated from a Sebkha in Thamelaht, Algeria. Standards in Genomic Sciences, 2016, 11, 68.	1.5	4
94	Flashy flagella: flagellin modification is relatively common and highly versatile among the Enterobacteriaceae. BMC Genomics, 2016, 17, 377.	2.8	33
95	Habitat heterogeneity and connectivity shape microbial communities in South American peatlands. Scientific Reports, 2016, 6, 25712.	3.3	31
96	Diversity of Frankia in root nodules of six Morella sp. from the Cape flora of South Africa. Plant and Soil, 2016, 406, 375-388.	3.7	8
97	The genome of the Antarctic polyextremophile <i>Nesterenkonia</i> sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiology Ecology, 2016, 92, fiw032.	2.7	32
98	Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica. FEMS Microbiology Ecology, 2016, 92, fiw051.	2.7	69
99	Diversity and Ecology of Viruses in Hyperarid Desert Soils. Applied and Environmental Microbiology, 2016, 82, 770-777.	3.1	89
100	The Gut Microbiomes of Two Pachysoma MacLeay Desert Dung Beetle Species (Coleoptera:) Tj ETQq0 0 0 rgBT /	Overlock 1 2.5	0 <u>Tf</u> 50 382 ⁻
101	Understanding diversity patterns in bacterioplankton communities from a subâ€ <scp>A</scp> ntarctic peatland. Environmental Microbiology Reports, 2015, 7, 547-553.	2.4	7
102	Draft Genome Sequence of Thermophilic Geobacillus sp. Strain Sah69, Isolated from Saharan Soil, Southeast Algeria. Genome Announcements, 2015, 3, .	0.8	6
103	The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of the <scp>C</scp> entral <scp>N</scp> amib <scp>D</scp> esert. Geobiology, 2015, 13, 494-505.	2.4	23
104	Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies. Frontiers in Microbiology, 2015, 6, 430.	3.5	24
105	Integrative conjugative elements of the ICEPan family play a potential role in Pantoea ananatis ecological diversification and antibiosis. Frontiers in Microbiology, 2015, 6, 576.	3.5	13
106	Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Frontiers in Microbiology, 2015, 6, 845.	3.5	46
107	Metagenomics of extreme environments. Current Opinion in Microbiology, 2015, 25, 97-102.	5.1	117
108	Draft Genome Sequence of Sphingomonas sp. Strain Ant20, Isolated from Oil-Contaminated Soil on Ross Island, Antarctica. Genome Announcements, 2015, 3, .	0.8	6

#	Article	IF	CITATIONS
109	Genetic signatures indicate widespread antibiotic resistance and phage infection in microbial communities of the McMurdo Dry Valleys, East Antarctica. Polar Biology, 2015, 38, 919-925.	1.2	28
110	Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews, 2015, 39, 203-221.	8.6	299
111	Metagenomic analysis of the viral community in <scp>N</scp> amib <scp>D</scp> esert hypoliths. Environmental Microbiology, 2015, 17, 480-495.	3.8	83
112	Cyanobacteria drive community composition and functionality in rock–soil interface communities. Molecular Ecology, 2015, 24, 812-821.	3.9	63
113	Normalization of environmental metagenomic DNA enhances the discovery of under-represented microbial community members. Letters in Applied Microbiology, 2015, 60, 359-366.	2.2	7
114	Evidence of novel plantâ€species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils. Journal of Basic Microbiology, 2015, 55, 1040-1047.	3.3	8
115	Cold stress affects antioxidative response and accumulation of medicinally important withanolides in Withania somnifera (L.) Dunal. Industrial Crops and Products, 2015, 74, 1008-1016.	5.2	45
116	An unusual feruloyl esterase belonging to family VIII esterases and displaying a broad substrate range. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 79-88.	1.8	15
117	Water regime history drives responses of soil Namib Desert microbial communities to wetting events. Scientific Reports, 2015, 5, 12263.	3.3	52
118	A novel bacterial Water Hypersensitivity-like protein shows <i>in vivo</i> protection against cold and freeze damage. FEMS Microbiology Letters, 2015, 362, fnv110.	1.8	17
119	Protection of Antarctic microbial communities ââ,¬â€œ ââ,¬Ëœout of sight, out of mindââ,¬â"¢. Frontiers in Microbiology, 2015, 6, 151.	3.5	47
120	A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarctic Science, 2015, 27, 3-18.	0.9	158
121	Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 2015, 24, 819-840.	2.6	66
122	Draft genomic DNA sequence of the multi-resistant Sphingomonas sp. strain AntH11 isolated from an Antarctic hypolith. FEMS Microbiology Letters, 2015, 362, fnv037.	1.8	9
123	Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3. Archives of Virology, 2015, 160, 2269-2282.	2.1	14
124	Recent Progress in Understanding the Mode of Action of Acetylxylan Esterases. Journal of Applied Glycoscience (1999), 2014, 61, 35-44.	0.7	21
125	Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus. BMC Structural Biology, 2014, 14, 21.	2.3	18
126	Comparative analysis of the Geobacillus hemicellulose utilization locus reveals a highly variable target for improved hemicellulolysis. BMC Genomics, 2014, 15, 836.	2.8	36

#	Article	IF	CITATIONS
127	Draft Genome Sequences of the Onion Center Rot Pathogen Pantoea ananatis PA4 and Maize Brown Stalk Rot Pathogen <i>P. ananatis</i> BD442. Genome Announcements, 2014, 2, .	0.8	7
128	Contrasting assembly processes in a bacterial metacommunity along a desiccation gradient. Frontiers in Microbiology, 2014, 5, 668.	3.5	34
129	Draft Genome Sequence of the Antarctic Polyextremophile Nesterenkonia sp. Strain AN1. Genome Announcements, 2014, 2, .	0.8	2
130	Draft Genome Sequences of <i>Geobacillus</i> sp. Strains CAMR5420 and CAMR12739. Genome Announcements, 2014, 2, .	0.8	5
131	Draft Genome Sequence of <i>Microbacterium</i> sp. Strain CH12i, Isolated from Shallow Groundwater in Cape Hallett, Antarctica. Genome Announcements, 2014, 2, .	0.8	6
132	Selection of <i>Clostridium</i> spp. in biological sand filters neutralizing synthetic acid mine drainage. FEMS Microbiology Ecology, 2014, 87, 678-690.	2.7	8
133	Niche-dependent genetic diversity in Antarctic metaviromes. Bacteriophage, 2014, 4, e980125.	1.9	12
134	Draft Genome Sequence of the Aromatic Hydrocarbon-Degrading Bacterium <i>Sphingobium</i> sp. Strain Ant17, Isolated from Antarctic Soil. Genome Announcements, 2014, 2, .	0.8	6
135	Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Applied Microbiology and Biotechnology, 2014, 98, 1247-1259.	3.6	43
136	Antarctic Terrestrial Microbiology. , 2014, , .		19
137	Some like it cold: understanding the survival strategies of psychrophiles. EMBO Reports, 2014, 15, 508-517.	4.5	501
138	Enhanced production of withaferin-A in shoot cultures of Withania somnifera (L) Dunal. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 430-434.	1.7	13
139	Draft Genome Sequence of <i>Williamsia</i> sp. Strain D3, Isolated From the Darwin Mountains, Antarctica. Genome Announcements, 2014, 2, .	0.8	9
140	A sequential co-extraction method for DNA, RNA and protein recovery from soil for future system-based approaches. Journal of Microbiological Methods, 2014, 103, 118-123.	1.6	22
141	Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion. Trends in Biotechnology, 2014, 32, 281-289.	9.3	21
142	Minor differences in sand physicochemistry lead to major differences in bacterial community structure and function after exposure to synthetic acid mine drainage. Biotechnology and Bioprocess Engineering, 2014, 19, 211-220.	2.6	8
143	High-Level Diversity of Tailed Phages, Eukaryote-Associated Viruses, and Virophage-Like Elements in the Metaviromes of Antarctic Soils. Applied and Environmental Microbiology, 2014, 80, 6888-6897. –	3.1	121
144	The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biology, 2014, 37, 1823-1833.	1.2	41

#	Article	IF	CITATIONS
145	Using Signature Genes as Tools To Assess Environmental Viral Ecology and Diversity. Applied and Environmental Microbiology, 2014, 80, 4470-4480.	3.1	141
146	Microbial ecology and biogeochemistry of continental Antarctic soils. Frontiers in Microbiology, 2014, 5, 154.	3.5	119
147	Lithobionts: Cryptic and Refuge Niches. , 2014, , 163-179.		8
148	First Report of a Potyvirus Infecting Albuca rautanenii in the Namib Desert. Plant Disease, 2014, 98, 1749-1749.	1.4	3
149	Niche-Partitioning of Edaphic Microbial Communities in the Namib Desert Gravel Plain Fairy Circles. PLoS ONE, 2014, 9, e109539.	2.5	19
150	Selection of Diazotrophic Bacterial Communities in Biological Sand Filter Mesocosms Used for the Treatment of Phenolic-Laden Wastewater. Microbial Ecology, 2013, 66, 563-570.	2.8	7
151	Assessment of temporal and spatial evolution of bacterial communities in a biological sand filter mesocosm treating winery wastewater. Journal of Applied Microbiology, 2013, 115, 91-101.	3.1	24
152	Dissimilatory sulphate reduction in hypersaline coastal pans: an integrated microbiological and geochemical study. Geobiology, 2013, 11, 224-233.	2.4	16
153	Balancing redox cofactor generation and ATP synthesis: Key microaerobic responses in thermophilic fermentations. Biotechnology and Bioengineering, 2013, 110, 1057-1065.	3.3	13
154	Evidence for successional development in Antarctic hypolithic bacterial communities. ISME Journal, 2013, 7, 2080-2090.	9.8	93
155	Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L) Moench). Plant and Soil, 2013, 372, 265-278.	3.7	26
156	Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles, 2013, 17, 329-337.	2.3	104
157	Biodiversity: So much more than legs and leaves. South African Journal of Science, 2013, 109, 9.	0.7	11
158	South African research in the Southern Ocean: New opportunities but serious challenges. South African Journal of Science, 2013, 109, 4.	0.7	3
159	Evidence of species recruitment and development of hot desert hypolithic communities. Environmental Microbiology Reports, 2013, 5, 219-224.	2.4	88
160	The Mechanism of the Amidases. Journal of Biological Chemistry, 2013, 288, 28514-28523.	3.4	28
161	Meeting Report: 1st International Functional Metagenomics Workshop May 7–8, 2012, St. Jacobs, Ontario, Canada Standards in Genomic Sciences, 2013, 8, 106-111.	1.5	2
162	Physical ecology of hypolithic communities in the central Namib Desert: The role of fog, rain, rock habitat, and light. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1451-1460.	3.0	54

#	Article	IF	CITATIONS
163	Micro-Eukaryotic Diversity in Hypolithons from Miers Valley, Antarctica. Biology, 2013, 2, 331-340.	2.8	9
164	Subtractive Hybridization Magnetic Bead Capture: Molecular Technique for Recovery of Full-Length ORFs from Metagenomes. , 2013, , 1-7.		0
165	Comparative investigations on thermostable pyrimidine nucleoside phosphorylases from Geobacillus thermoglucosidasius and Thermus thermophilus. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 27-34.	1.8	38
166	Challenges to the Future Conservation of the Antarctic. Science, 2012, 337, 158-159.	12.6	146
167	Microbial community structure stability, a key parameter in monitoring the development of constructed wetland mesocosms during start-up. Research in Microbiology, 2012, 163, 28-35.	2.1	41
168	Treatment of high ethanol concentration wastewater by biological sand filters: Enhanced COD removal and bacterial community dynamics. Journal of Environmental Management, 2012, 109, 54-60.	7.8	24
169	Phenolic removal processes in biological sand filters, sand columns and microcosms. Bioresource Technology, 2012, 119, 262-269.	9.6	27
170	Antarctic psychrophiles: models for understanding the molecular basis of survival at low temperature and responses to climate change. Biodiversity, 2012, 13, 249-256.	1.1	27
171	Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nature Communications, 2012, 3, 660.	12.8	69
172	Understanding and protecting the world's biodiversity: The role and legacy of the SCAR programme "Evolution and Biodiversity in the Antarctic― Marine Genomics, 2012, 8, 3-8.	1.1	26
173	Genome sequence of temperate bacteriophage Psymv2 from Antarctic Dry Valley soil isolate Psychrobacter sp. MV2. Extremophiles, 2012, 16, 715-726.	2.3	30
174	Understanding physiological responses to preâ€treatment inhibitors in ethanologenic fermentations. Biotechnology Journal, 2012, 7, 1169-1181.	3.5	44
175	Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles, 2012, 16, 607-618.	2.3	49
176	The soil and plant determinants of community structures of the dominant actinobacteria in Marion Island terrestrial habitats, Sub-Antarctica. Polar Biology, 2012, 35, 1129-1141.	1.2	17
177	Biogeography of bacterial communities in hot springs: a focus on the actinobacteria. Extremophiles, 2012, 16, 669-679.	2.3	49
178	Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiology Ecology, 2012, 82, 326-340.	2.7	85
179	Hypolithic microbial communities: between a rock and a hard place. Environmental Microbiology, 2012, 14, 2272-2282.	3.8	118
180	A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles, 2012, 16, 79-86.	2.3	46

#	Article	IF	CITATIONS
181	Mechanisms and Applications of Microbial Solvent Tolerance. Microbiology Monographs, 2012, , 177-208.	0.6	3
182	Unique Aliphatic Amidase from a Psychrotrophic and Haloalkaliphilic Nesterenkonia Isolate. Applied and Environmental Microbiology, 2011, 77, 3696-3702.	3.1	31
183	Ecological Distribution of Microorganisms in Terrestrial, Psychrophilic Habitats. , 2011, , 839-863.		2
184	Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends in Microbiology, 2011, 19, 540-548.	7.7	136
185	Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 2011, 3, 581-586.	2.4	69
186	Genetic tool development underpins recent advances in thermophilic whole ell biocatalysts. Microbial Biotechnology, 2011, 4, 438-448.	4.2	42
187	Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biology, 2011, 34, 307-311.	1.2	60
188	Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 2011, 34, 1657-1668.	1.2	58
189	Ethanol degradation and the benefits of incremental priming in pilot-scale constructed wetlands. Ecological Engineering, 2011, 37, 1453-1459.	3.6	21
190	Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology, 2011, 49, 326-346.	3.2	295
191	The Hypersaline Lakes of Inner Mongolia: The MGAtech Project. , 2011, , 65-107.		3
192	Endolithic Microbial Colonization of Limestone in a High-altitude Arid Environment. Microbial Ecology, 2010, 59, 689-699.	2.8	64
193	Hypolithic Microbial Community of Quartz Pavement in the High-Altitude Tundra of Central Tibet. Microbial Ecology, 2010, 60, 730-739.	2.8	72
194	Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8. Applied Microbiology and Biotechnology, 2010, 88, 143-153.	3.6	20
195	Immobilization of Geobacillus pallidus RAPc8 nitrile hydratase (NHase) reduces substrate inhibition and enhances thermostability. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 109-115.	1.8	23
196	Developments in nitrile and amide biotransformation processes. Trends in Biotechnology, 2010, 28, 561-569.	9.3	45
197	Improving the production of a thermostable amidase through optimising IPTG induction in a highly dense culture of recombinant Escherichia coli. Biochemical Engineering Journal, 2010, 52, 19-24.	3.6	26
198	On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 2010, 8, 129-138.	28.6	505

#	Article	IF	CITATIONS
199	Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 2010, 22, 714-720.	0.9	97
200	Characterisation of the arsenic resistance genes in Bacillus sp. UWC isolated from maturing fly ash acid mine drainage neutralised solids. South African Journal of Science, 2010, 106, .	0.7	7
201	Extremophiles in biofuel synthesis. Environmental Technology (United Kingdom), 2010, 31, 871-888.	2.2	130
202	Molecular adaptations to psychrophily: the impact of â€~omic' technologies. Trends in Microbiology, 2010, 18, 374-381.	7.7	240
203	Retrieval of Full-Length Functional Genes Using Subtractive Hybridization Magnetic Bead Capture. Methods in Molecular Biology, 2010, 668, 287-297.	0.9	5
204	Cobalt Uptake and Resistance to Trace Metals in <i>Comamonas testosteroni</i> Isolated From a Heavy-Metal Contaminated Site in the Zambian Copperbelt. Geomicrobiology Journal, 2010, 27, 656-668.	2.0	16
205	Acrolein in Wine: Importance of 3-Hydroxypropionaldehyde and Derivatives in Production and Detection. Journal of Agricultural and Food Chemistry, 2010, 58, 3243-3250.	5.2	33
206	Cryptic microbial communities in Antarctic deserts. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19749-19750.	7.1	27
207	Identification of a Novel Alkaliphilic Esterase Active at Low Temperatures by Screening a Metagenomic Library from Antarctic Desert Soil. Applied and Environmental Microbiology, 2009, 75, 4657-4659.	3.1	90
208	Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends in Biotechnology, 2009, 27, 398-405.	9.3	229
209	Bleaching response of corals and their Symbiodinium communities in southern Africa. Marine Biology, 2009, 156, 2049-2062.	1.5	28
210	Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environmental Microbiology, 2009, 11, 566-576.	3.8	154
211	Metagenomic gene discovery: How far have we moved into novel sequence space?. Biotechnology Journal, 2009, 4, 1671-1683.	3.5	52
212	Microbial Biogeography of Six Salt Lakes in Inner Mongolia, China, and a Salt Lake in Argentina. Applied and Environmental Microbiology, 2009, 75, 5750-5760.	3.1	119
213	Streptomyces hypolithicus sp. nov., isolated from an Antarctic hypolith community. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2032-2035.	1.7	23
214	Capturing global metabolism. Nature Biotechnology, 2009, 27, 1132-1133.	17.5	3
215	Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles, 2008, 12, 651-656.	2.3	65
216	The effect of the particulate phase on coal biosolubilisation mediated by Trichoderma atroviride in a slurry bioreactor. Fuel Processing Technology, 2008, 89, 123-130.	7.2	32

#	Article	IF	CITATIONS
217	Microbial responses to solvent and alcohol stress. Biotechnology Journal, 2008, 3, 1388-1397.	3.5	20
218	Editorial: Biotech in South Africa. Biotechnology Journal, 2008, 3, 1322-1323.	3.5	0
219	Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME Journal, 2008, 2, 308-320.	9.8	144
220	Genes responsible for hydantoin degradation of a halophilic Ochrobactrum sp. G21 and Delftia sp. I24 — New insight into relation of d-hydantoinases and dihydropyrimidinases. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 2-12.	1.8	6
221	Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1922-1926.	1.7	43
222	Metagenomics: Microbial Community Genomes Revealed. , 2008, , 313-332.		13
223	Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1705-1708.	1.7	30
224	Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2031-2035.	1.7	33
225	Salsuginibacillus kocurii gen. nov., sp. nov., a moderately halophilic bacterium from soda-lake sediment. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2381-2386.	1.7	38
226	Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2084-2088.	1.7	46
227	Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1137-1142.	1.7	31
228	Molecular Characterization of a Novel Family VIII Esterase from <i>Burkholderia multivorans</i> UWC10. Journal of Molecular Microbiology and Biotechnology, 2007, 13, 181-188.	1.0	12
229	Halovivax ruber sp. nov., an extremely halophilic archaeon isolated from Lake Xilinhot, Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1024-1027.	1.7	25
230	Halorubrum ejinorense sp. nov., isolated from Lake Ejinor, Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2538-2542.	1.7	23
231	Dissimilatory sulfate reduction in hypersaline coastal pans: Activity across a salinity gradient. Geochimica Et Cosmochimica Acta, 2007, 71, 5102-5116.	3.9	52
232	Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1402-1407.	1.7	56
233	Structure of an aliphatic amidase from <i>Geobacillus pallidus</i> RAPc8. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1048-1058.	2.5	28
234	A novel recombinant ethyl ferulate esterase from Burkholderia multivorans. Journal of Applied Microbiology, 2007, 103, 1610-1620.	3.1	17

#	Article	IF	CITATIONS
235	Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China. BMC Genomics, 2007, 8, 410.	2.8	66
236	Subtractive hybridization magnetic bead capture: A new technique for the recovery of fullâ€length ORFs from the metagenome. Biotechnology Journal, 2007, 2, 36-40.	3.5	33
237	A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity. Applied Microbiology and Biotechnology, 2007, 75, 801-811.	3.6	61
238	Stability of ATP in Antarctic mineral soils. Polar Biology, 2007, 30, 1599-1603.	1.2	23
239	Degradation of low rank coal by Trichoderma atroviride ES11. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 625-631.	3.0	46
240	Degradation of low rank coal by Trichoderma atroviride ES11. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 633-633.	3.0	2
241	Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 765-770.	1.7	61
242	The quaternary structure of the amidase fromGeobacillus pallidusRAPc8 is revealed by its crystal packing. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1174-1178.	0.7	12
243	Bacterial Diversity in Three Different Antarctic Cold Desert Mineral Soils. Microbial Ecology, 2006, 51, 413-421.	2.8	216
244	Distribution of hydantoinase activity in bacterial isolates from geographically distinct environmental sources. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 160-165.	1.8	10
245	Natrinema ejinorense sp. nov., isolated from a saline lake in Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2683-2687.	1.7	27
246	Halorubrum orientale sp. nov., a halophilic archaeon isolated from Lake Ejinor, Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2559-2563.	1.7	26
247	Gracilibacillus orientalis sp. nov., a novel moderately halophilic bacterium isolated from a salt lake in Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 599-604.	1.7	56
248	Identification of Eukaryotic Open Reading Frames in Metagenomic cDNA Libraries Made from Environmental Samples. Applied and Environmental Microbiology, 2006, 72, 135-143.	3.1	63
249	16 Handling of Psychrophilic Microorganisms. Methods in Microbiology, 2006, 35, 371-393.	0.8	5
250	Caldalkalibacillus thermarum gen. nov., sp. nov., a novel alkalithermophilic bacterium from a hot spring in China. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1217-1221.	1.7	53
251	Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1519-1524.	1.7	45
252	Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2501-2505.	1.7	78

#	Article	IF	CITATIONS
253	Bacterial diversity in the rhizosphere of Proteaceae species. Environmental Microbiology, 2005, 7, 1755-1768.	3.8	45
254	Metagenomic gene discovery: past, present and future. Trends in Biotechnology, 2005, 23, 321-329.	9.3	241
255	Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles, 2005, 9, 385-389.	2.3	34
256	Molecular analysis of the nitrile catabolism operon of the thermophile Bacillus pallidus RAPc8. Biochimica Et Biophysica Acta - General Subjects, 2005, 1725, 35-46.	2.4	42
257	The upper temperature for life – where do we draw the line?. Trends in Microbiology, 2004, 12, 58-60.	7.7	63
258	Endangered Antarctic Environments. Annual Review of Microbiology, 2004, 58, 649-690.	7.3	177
259	16ÂS rDNA primers and the unbiased assessment of thermophile diversity. Biochemical Society Transactions, 2004, 32, 218-221.	3.4	49
260	Metagenomics, gene discovery and the ideal biocatalyst. Biochemical Society Transactions, 2004, 32, 298-302.	3.4	31
261	High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles, 2003, 7, 275-282.	2.3	70
262	Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods, 2003, 55, 541-555.	1.6	1,591
263	PCR-based detection of non-indigenous microorganisms in â€~pristine' environments. Journal of Microbiological Methods, 2003, 53, 157-164.	1.6	29
264	Comparative Biology of Mesophilic and Thermophilic Nitrile Hydratases. Advances in Applied Microbiology, 2003, 52, 123-158.	2.4	23
265	Non-specificity of Staphylococcus generic primers. Microbiology (United Kingdom), 2003, 149, 1605-1607.	1.8	4
266	Biodegradation of high-concentration isopropanol by a solvent-tolerant thermophile, Bacillus pallidus. Extremophiles, 2002, 6, 319-323.	2.3	39
267	Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles, 2002, 6, 431-436.	2.3	121
268	Characterization of nitride thin films by electron backscatter diffraction. Journal of Microscopy, 2002, 205, 226-230.	1.8	8
269	The search for the ideal biocatalyst. Nature Biotechnology, 2002, 20, 37-45.	17.5	275
270	Efficient molecular cloning of environmental DNA from geothermal sediments. Biotechnology Letters, 2002, 24, 155-161.	2.2	18

#	Article	IF	CITATIONS
271	Development of Biotechnology in South Africa. Electronic Journal of Biotechnology, 2002, 5, .	2.2	Ο
272	Bacterial community analysis of Indonesian hot springs. FEMS Microbiology Letters, 2001, 200, 103-109.	1.8	59
273	Bacterial community analysis of Indonesian hot springs. FEMS Microbiology Letters, 2001, 200, 103-109.	1.8	3
274	Immobilization of functionally unstable catechol-2,3-dioxygenase greatly improves operational stability. Enzyme and Microbial Technology, 2000, 26, 568-573.	3.2	43
275	Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp Enzyme and Microbial Technology, 2000, 26, 368-373.	3.2	56
276	Use your neighbour's genes. Nature, 2000, 407, 466-467.	27.8	10
277	Microbial genomes – the untapped resource. Trends in Biotechnology, 2000, 18, 14-16.	9.3	62
278	Detecting human bacterial contamination in Antarctic soils. Polar Biology, 2000, 23, 644-650.	1.2	31
279	<i>Sulfolobus Solfataricus</i> β-Glycosidase-Catalysed Synthesis of Sugar-Alcohol Conjugates in the Presence of Organic Solvents. Biocatalysis and Biotransformation, 2000, 18, 291-299.	2.0	7
280	Effect of Water Miscible Organic Solvents on Kinetics of a Thermostable Î ² -Glycosidase. Biocatalysis and Biotransformation, 1999, 17, 251-267.	2.0	5
281	Thermostable nitrilase catalysed production of nicotinic acid from 3-cyanopyridine. Enzyme and Microbial Technology, 1999, 25, 718-724.	3.2	43
282	Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles, 1999, 3, 283-291.	2.3	84
283	Molecular characterisation of a novel thermophilic nitrile hydratase. BBA - Proteins and Proteomics, 1999, 1431, 249-260.	2.1	51
284	Hot bugs, cold bugs and sushi. Trends in Biotechnology, 1998, 16, 241-242.	9.3	4
285	Extracellular α-amylase from Thermus filiformis Ork A2: purification and biochemical characterization. Extremophiles, 1998, 2, 23-32.	2.3	52
286	Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes. Extremophiles, 1998, 2, 207-216.	2.3	64
287	A novel thermostable nitrile hydratase. Extremophiles, 1998, 2, 347-357.	2.3	70
288	Meta-pathway degradation of phenolics by thermophilic Bacilli. Enzyme and Microbial Technology, 1998, 23, 462-468.	3.2	55

#	Article	IF	CITATIONS
289	Characterization, crystallization and preliminary X-ray investigation of glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeonSulfolobus solfataricus. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 671-674.	2.5	7
290	Degradation and denaturation of stable enzymes. Progress in Biotechnology, 1998, , 349-352.	0.2	1
291	Novel thermophilic bacteria producing nitrile-degrading enzymes. Microbiology (United Kingdom), 1997, 143, 2313-2320.	1.8	49
292	Thermophilic proteins: Stability and function in aqueous and organic solvents. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 429-438.	0.6	106
293	The marine biosphere: a global resource for biotechnology. Trends in Biotechnology, 1997, 15, 129-131.	9.3	18
294	The Effects of Cosolvent and Incubation Temperature on the Enantioselectivity of Aliphatic Ketone Reductions Catalyzed by Thermostable Secondary Alcohol Dehydrogenases. Annals of the New York Academy of Sciences, 1996, 799, 244-250.	3.8	3
295	Rapid purification of two thermophilic proteinases using dye-ligand chromatography. Journal of Proteomics, 1996, 32, 1-6.	2.4	6
296	Complementation of apgk deletion mutation inSaccharomyces cerevisiae with expression of the phosphoglycerate-kinase gene from the hyperthermophilic ArchaeonSulfolobus solfataricus. Current Genetics, 1996, 29, 594-596.	1.7	3
297	Complementation of a pgk deletion mutation in Saccharomyces cerevisiae with expression of the phosphoglycerate-kinase gene from the hyperthermophilic Archaeon Sulfolobus solfataricus. Current Genetics, 1996, 29, 594-596.	1.7	5
298	Uracil-DNA glycosylase activities in hyperthermophilic micro-organisms. FEMS Microbiology Letters, 1996, 143, 267-271.	1.8	44
299	Uracil-DNA glycosylase activities in hyperthermophilic micro-organisms. FEMS Microbiology Letters, 1996, 143, 267-271.	1.8	1
300	The Phosphoglycerate Kinase and glsyceraldehyde-3-phosphate Dehydrogenase Genes from the Thermophilic Archaeon Sulfolobus Solfataricus Overlap by 8-bp. Isolation, Sequencing of the Genes and Expression in Escherichia coli. FEBS Journal, 1995, 233, 800-808.	0.2	29
301	Reducing enzyme conformational flexibility by multi-point covalent immobilisation. Biotechnology Letters, 1995, 9, 1-6.	0.5	14
302	Brent Spar or Broken Spur?. Nature, 1995, 376, 208-208.	27.8	1
303	Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzyme and Microbial Technology, 1995, 17, 366-372.	3.2	59
304	Purification and partial characterization of a novel thermophilic carboxylesterase with high mesophilic specific activity. Enzyme and Microbial Technology, 1995, 17, 816-825.	3.2	38
305	Hyperthermophilic enzymes: biochemistry and biotechnology. Geological Society Special Publication, 1995, 87, 351-363.	1.3	1
306	Cloning and sequencing of a gene from the archaeon Pyrococcus furiosus with high homology to a gene encoding phosphoenolpyruvate synthetase from Escherichia coli. Gene, 1995, 160, 101-103.	2.2	4

#	Article	IF	CITATIONS
307	Optimising the recovery of recombinant thermostable proteins expressed in mesophilic hosts. Journal of Biotechnology, 1995, 42, 177-184.	3.8	15
308	Purification and Characterisation of a Novel Secondary Alcohol Dehydrogenase from A Thermonaerobacterium SP Protein and Peptide Letters, 1994, 1, 207-214.	0.9	1
309	Biocatalysis in Organic Media. ACS Symposium Series, 1992, , 86-107.	0.5	7
310	Biotechnology of the Archaea. Trends in Biotechnology, 1992, 10, 315-323.	9.3	56
311	Functional Stability of Cytoplasmic Enzymes in Aqueous and Mixed-Phase Solvents. Progress in Biotechnology, 1992, 8, 623-628.	0.2	1
312	Isolation and partial characterization of a novel thermostable carboxylesterase from a thermophilic Bacillus. Enzyme and Microbial Technology, 1991, 13, 158-163.	3.2	26
313	Phosphocellulose as a tool for rapid purification of DNA-modifying enzymes. Analytica Chimica Acta, 1991, 249, 195-200.	5.4	16
314	Heat-induced precipitation of cell homogenates: An investigation of the recovery of thermostable proteins. Enzyme and Microbial Technology, 1990, 12, 184-189.	3.2	11
315	Biocatalysis in organic solvent systems using thermostable enzymes: esterase-catalysed transesterification of Z-L-tyrosine p-nitrophenyl ester. Enzyme and Microbial Technology, 1990, 12, 374-377.	3.2	12
316	β-Galactosidase from a strain of the anaerobic thermophile, Thermoanaerobacter. Enzyme and Microbial Technology, 1989, 11, 180-186.	3.2	23
317	Correlation between microbial protein thermostability and resistance to denaturation in aqueous: organic solvent two-phase systems. Enzyme and Microbial Technology, 1989, 11, 568-574.	3.2	87
318	Thermostable microbial protein stability in aqueous: organic two-solvent phase systems. Biochemical Society Transactions, 1989, 17, 581-582.	3.4	2
319	Detection of sequences homologous to the highly-conserved HSP70 gene of eukaryotes in thermophilic eubacteria and archaebacteria. FEMS Microbiology Letters, 1988, 56, 157-160.	1.8	3
320	Characteristics of a thermostable protease from <i>Desulfurococcus</i> , an extreme thermophile growing at 88°C. Biochemical Society Transactions, 1987, 15, 641-642.	3.4	1
321	DNA-associated proteins from extremely thermophilic archaebacteria. Biochemical Society Transactions, 1987, 15, 640-641.	3.4	2
322	Some observations on the inhibition and activation of a thermophilic protease. International Journal of Biochemistry & Cell Biology, 1987, 19, 483-486.	0.5	13
323	The specific activities of mesophilic and thermophilic proteinases. International Journal of Biochemistry & Cell Biology, 1987, 19, 741-743.	0.5	18
324	A comparison of extracellular serine proteases from four strains ofThermus aquaticus. FEMS Microbiology Letters, 1987, 43, 155-159.	1.8	17

#	Article	IF	CITATIONS
325	Thermophilic proteases: Properties and potential applications. Trends in Biotechnology, 1985, 3, 68-72.	9.3	81
326	A modification for increasing the sensitivity of the casein-agar plate assay: a simple semiquantitative assay for thermophilic and mesophilic proteases. Journal of Proteomics, 1982, 6, 31-37.	2.4	19
327	Purification and some properties of an extracellular protease (caldolysin) from an extreme thermophile. BBA - Proteins and Proteomics, 1982, 705, 293-305.	2.1	85
328	The properties of immobilized caldolysin, a thermostable protease from an extreme thermophile. Biotechnology and Bioengineering, 1982, 24, 2053-2061.	3.3	26
329	Ecology and Biodiversity of Cold-Adapted Microorganisms. , 0, , 117-132.		8
330	Bacterial Diversity in Polar Habitats. , 0, , 1-31.		2