List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional Porous Graphene for Highâ€Efficiency Steam Generation by Heat Localization. Advanced Materials, 2015, 27, 4302-4307.	11.1	769
2	High Catalytic Activity of Nitrogen and Sulfur Coâ€Đoped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 2131-2136.	7.2	760
3	Nanoporous Graphene with Singleâ€Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 14031-14035.	7.2	628
4	Monolayer MoS ₂ Films Supported by 3D Nanoporous Metals for Highâ€Efficiency Electrocatalytic Hydrogen Production. Advanced Materials, 2014, 26, 8023-8028.	11.1	299
5	Bicontinuous Nanoporous Nâ€doped Graphene for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 4145-4150.	11.1	261
6	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	11.1	236
7	Highâ€Quality Threeâ€Dimensional Nanoporous Graphene. Angewandte Chemie - International Edition, 2014, 53, 4822-4826.	7.2	215
8	3D Nanoporous Nitrogenâ€Đoped Graphene with Encapsulated RuO ₂ Nanoparticles for Li–O ₂ Batteries. Advanced Materials, 2015, 27, 6137-6143.	11.1	195
9	Boosting electrochemical water splitting <i>via</i> ternary NiMoCo hybrid nanowire arrays. Journal of Materials Chemistry A, 2019, 7, 2156-2164.	5.2	163
10	Chemically exfoliated ReS ₂ nanosheets. Nanoscale, 2014, 6, 12458-12462.	2.8	160
11	Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391-400.	8.2	137
12	Lithium intercalation into bilayer graphene. Nature Communications, 2019, 10, 275.	5.8	136
13	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 3601-3608.	7.2	136
14	Chemical Vapor Deposition of N-Doped Graphene and Carbon Films: The Role of Precursors and Gas Phase. ACS Nano, 2014, 8, 3337-3346.	7.3	133
15	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Liâ€O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1501870.	10.2	132
16	Correlation between Chemical Dopants and Topological Defects in Catalytically Active Nanoporous Graphene. Advanced Materials, 2016, 28, 10644-10651.	11.1	110
17	Chemical Vapor Deposition of Monolayer Mo1â^'xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016, 6, 21536.	1.6	101
18	Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte. ACS Catalysis, 2018, 8, 3579-3586.	5.5	98

#	Article	IF	CITATIONS
19	Acceleration of Electrochemical CO ₂ Reduction to Formate at the Sn/Reduced Graphene Oxide Interface. ACS Catalysis, 2021, 11, 3310-3318.	5.5	92
20	Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction. Advanced Science, 2019, 6, 1900119.	5.6	90
21	Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chemical Science, 2021, 12, 11306-11315.	3.7	88
22	Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains. Journal of the American Chemical Society, 2015, 137, 7678-7685.	6.6	82
23	Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Znâʿʾair batteries. Applied Catalysis B: Environmental, 2020, 276, 119172.	10.8	79
24	Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 2019, 5, eaat6951.	4.7	78
25	Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction. Nature Communications, 2021, 12, 203.	5.8	77
26	Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Scientific Reports, 2017, 7, 12371.	1.6	75
27	Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362.	8.2	74
28	On hip Microâ€Pseudocapacitors for Ultrahigh Energy and Power Delivery. Advanced Science, 2015, 2, 1500067.	5.6	66
29	Full Performance Nanoporous Graphene Based Liâ€O ₂ Batteries through Solution Phase Oxygen Reduction and Redoxâ€Additive Mediated Li ₂ O ₂ Oxidation. Advanced Energy Materials, 2017, 7, 1601933.	10.2	65
30	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2018, 57, 13302-13307.	7.2	64
31	Hierarchical nanoporous nickel alloy as three-dimensional electrodes for high-efficiency energy storage. Scripta Materialia, 2014, 89, 69-72.	2.6	62
32	Synthesizing 1T–1H Two-Phase Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579.	7.3	62
33	Effect of Graphene Encapsulation of NiMo Alloys on Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 792-799.	5.5	60
34	Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nature Communications, 2017, 8, 14885.	5.8	58
35	Graphene Layer Encapsulation of Non-Noble Metal Nanoparticles as Acid-Stable Hydrogen Evolution Catalysts. ACS Energy Letters, 2018, 3, 1539-1544.	8.8	57
36	Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279.	8.2	54

#	Article	IF	CITATIONS
37	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	1.6	52
38	Twelve-Component Free-Standing Nanoporous High-Entropy Alloys for Multifunctional Electrocatalysis. , 2022, 4, 181-189.		50
39	3D Bicontinuous Nanoporous Reduced Graphene Oxide for Highly Sensitive Photodetectors. Advanced Functional Materials, 2016, 26, 1271-1277.	7.8	48
40	Electric Properties of Dirac Fermions Captured into 3D Nanoporous Graphene Networks. Advanced Materials, 2016, 28, 10304-10310.	11.1	47
41	Dealloying Kinetics of AgAu Nanoparticles by <i>In Situ</i> Liquid-Cell Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 1944-1951.	4.5	47
42	Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 6024-6033.	1.3	43
43	Topology and doping effects in three-dimensional nanoporous graphene. Carbon, 2018, 131, 258-265.	5.4	41
44	Phase-Dependent Reactivity of Nickel Molybdates for Electrocatalytic Urea Oxidation. ACS Applied Energy Materials, 2020, 3, 7535-7542.	2.5	41
45	Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS Omega, 2017, 2, 3691-3697.	1.6	32
46	Building a Reactive Armor Using S-Doped Graphene for Protecting Potassium Metal Anodes from Oxygen Crossover in K–O ₂ Batteries. ACS Energy Letters, 2020, 5, 1788-1793.	8.8	32
47	Bottom-up Synthesis of Porous NiMo Alloy for Hydrogen Evolution Reaction. Metals, 2018, 8, 83.	1.0	29
48	Transfer hydrogenation of alkenes using Ni/Ru/Pt/Au heteroquatermetallic nanoparticle catalysts: sequential cooperation of multiple nano-metal species. Chemical Communications, 2014, 50, 12123-12126.	2.2	27
49	Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2015, 2, 1500086.	5.6	26
50	Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134.	1.6	25
51	Dirac Fermion Kinetics in 3D Curved Graphene. Advanced Materials, 2020, 32, e2005838.	11.1	24
52	Tetramethoxypyrene-Based Biradical Donors with Tunable Physical and Magnetic Properties. Organic Letters, 2013, 15, 4280-4283.	2.4	23
53	Polyethylene Glycol Covered Sn Catalysts Accelerate the Formation Rate of Formate by Carbon Dioxide Reduction. ACS Catalysis, 2021, 11, 9962-9969.	5.5	22
54	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2103632.	7.8	19

#	Article	IF	CITATIONS
55	Magnetic Properties of Feâ^'Pd Alloy Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 11699-11702.	1.5	18
56	Earthâ€Abundant and Durable Nanoporous Catalyst for Exhaustâ€Gas Conversion. Advanced Functional Materials, 2016, 26, 1609-1616.	7.8	18
57	Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. Journal of Energy Chemistry, 2022, 66, 466-473.	7.1	18
58	Corrosion-resistant non-noble metal electrodes for PEM-type water electrolyzer. International Journal of Hydrogen Energy, 2021, 46, 38603-38611.	3.8	17
59	Breaking the Semiâ€Quinoid Structure: Spinâ€5witching from Strongly Coupled Singlet to Polarized Triplet State. Chemistry - A European Journal, 2014, 20, 12041-12045.	1.7	15
60	Deuterium Adsorption on Free-Standing Graphene. Nanomaterials, 2021, 11, 130.	1.9	14
61	Magnetic Sponge Prepared with an Alkanedithiol-Bridged Network of Nanomagnets. Journal of the American Chemical Society, 2011, 133, 11470-11473.	6.6	13
62	An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene. Nanoscale, 2016, 8, 18551-18557.	2.8	13
63	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	2.8	13
64	Phase-Dependent Electrochemical CO ₂ Reduction Ability of NiSn Alloys for Formate Generation. ACS Applied Energy Materials, 2021, 4, 7122-7128.	2.5	13
65	Graphene@Nanoporous Nickel Cathode for Liâ^'O ₂ Batteries. ChemNanoMat, 2016, 2, 176-181.	1.5	12
66	Towards free-standing graphane: atomic hydrogen and deuterium bonding to nano-porous graphene. Nanotechnology, 2021, 32, 035707.	1.3	12
67	Recyclable Clay-Supported Heteropolyacid Catalysts for Complete Glycolysis and Aminolysis of Post-consumer PET Beverage Bottles. Journal of Polymers and the Environment, 2022, 30, 2614-2630.	2.4	12
68	Crystal Engineering of Tolane Bridged Nitronyl Nitroxide Biradicals: Candidates for Quantum Magnets. Crystal Growth and Design, 2014, 14, 5840-5846.	1.4	11
69	Fabrication of graphene/MoS2 alternately stacked structure for enhanced lithium storage. Materials Chemistry and Physics, 2020, 239, 121987.	2.0	11
70	Highâ€Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transitionâ€Metal Dichalcogenide Nanosheets. Angewandte Chemie, 2020, 132, 3629-3636.	1.6	11
71	Pd Nanoparticle Embedded with Only One Co Atom Behaves as a Single-Particle Magnet. Journal of the Physical Society of Japan, 2008, 77, 103701.	0.7	10
72	Chemical Selectivity at Grain Boundary Dislocations in Monolayer Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2017, 9, 29438-29444.	4.0	10

Υοςμικαζυ Ιτο

#	Article	IF	CITATIONS
73	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie, 2018, 130, 13486-13491.	1.6	10
74	Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network. NPG Asia Materials, 2021, 13, .	3.8	10
75	Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.	4.5	9
76	Bimetallic Co–Pd alloy nanoparticles as magnetically recoverable catalysts for the aerobic oxidation of alcohols in water. Tetrahedron, 2014, 70, 6146-6149.	1.0	8
77	One-step Nanoporous Structure Formation Using NiO Nanoparticles: Pore Size Control and Pore Size Dependence of Hydrogen Evolution Reaction. Chemistry Letters, 2017, 46, 267-270.	0.7	8
78	Geometric model of 3D curved graphene with chemical dopants. Carbon, 2021, 182, 223-232.	5.4	7
79	Classes of Nanomagnets Created from Alkanethiol oated Pt or Pd Nanoparticles and Their Alloys with Co. European Journal of Inorganic Chemistry, 2010, 2010, 4279-4287.	1.0	6
80	Anomalous metallic-like transport of Co–Pd ferromagnetic nanoparticles cross-linked with l̃€-conjugated molecules having a rotational degree of freedom. Physical Chemistry Chemical Physics, 2014, 16, 288-296.	1.3	6
81	Bismuth/Porous Graphene Heterostructures for Ultrasensitive Detection of Cd (II). Materials, 2020, 13, 5102.	1.3	5
82	Terahertz and infrared response assisted by heat localization in nanoporous graphene. Carbon, 2021, 173, 403-409.	5.4	5
83	Ferromagnetic Enhancement in the Clusters of Co–Pd Magnetic Nanoparticles Induced by the Formation of Cross-Linkage. Journal of Physical Chemistry C, 2011, 115, 8971-8975.	1.5	4
84	Shape Sensitivity on Toxicity of Gold Nanoplates in Breast Cancer Cells. Journal of Nanoscience and Nanotechnology, 2015, 15, 9520-9530.	0.9	4
85	One-Dimensional Atomic Segregation at Semiconductor–Metal Interfaces of Polymorphic Transition Metal Dichalcogenide Monolayers. Nano Letters, 2018, 18, 6157-6163.	4.5	4
86	Fabrication of high-strength carbon nanotube bundles using iron oxides co-assisted chemical vapor deposition. Applied Physics Letters, 2019, 115, .	1.5	4
87	Damageâ€Free Solar Dewatering of Microâ€Algal Concentrates via Multifunctional Hierarchical Porous Graphene. Advanced Sustainable Systems, 2019, 3, 1900045.	2.7	3
88	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170284.	7.8	1
89	2D MoS 2 Heterostructures on Epitaxial and Selfâ€Standing Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	3.0	1
90	Analyzing nanoscale optical and thermal properties in nanoporous graphene by near-field infrared microscopy. , 2017, , .		0

#	Article	IF	CITATIONS
91	High-sensitivity visualization of localized electric fields using low-energy electron beam deflection. Japanese Journal of Applied Physics, 2018, 57, 065201.	0.8	0
92	Understanding the Detection Mechanisms and Ability of Molecular Hydrogen on Three-Dimensional Bicontinuous Nanoporous Reduced Graphene Oxide. Materials, 2020, 13, 2259.	1.3	0
93	Improved graphene applications made possible by 3D graphene structures. Tanso, 2018, 2018, 8-15.	0.1	0
94	Development and application of scanning electrochemical cell microscope for electrochemical imaging of catalytic active sites. Denki Kagaku, 2020, 88, 229-234.	0.0	0