Sonia Negrao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465752/publications.pdf

Version: 2024-02-01

279487 329751 4,457 41 23 37 citations h-index g-index papers 47 47 47 5881 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Editorial: Multi-Disciplinary Approaches to Plant Responses to Climate Change. Frontiers in Plant Science, 2022, 13, 876432.	1.7	2
2	Editorial overview: Plant biotechnology. Current Opinion in Biotechnology, 2022, , 102733.	3.3	0
3	Phenotyping for waterlogging tolerance in crops: current trends and future prospects. Journal of Experimental Botany, 2022, 73, 5149-5169.	2.4	23
4	Capturing crop adaptation to abiotic stress using image-based technologies. Open Biology, 2022, 12 , .	1.5	18
5	Assessing Rice Salinity Tolerance: From Phenomics to Association Mapping. Methods in Molecular Biology, 2021, 2238, 339-375.	0.4	4
6	Genetic mapping of the early responses to salt stress in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 107, 544-563.	2.8	22
7	Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands. Plant Physiology, 2020, 182, 534-546.	2.3	44
8	Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PLoS ONE, 2020, 15, e0236037.	1.1	25
9	Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Frontiers in Artificial Intelligence, 2020, 3, 28.	2.0	55
10	Genomic history and ecology of the geographic spread of rice. Nature Plants, 2020, 6, 492-502.	4.7	143
11	Title is missing!. , 2020, 15, e0236037.		0
12	Title is missing!. , 2020, 15, e0236037.		0
12	Title is missing!. , 2020, 15, e0236037. Title is missing!. , 2020, 15, e0236037.		0
13	Title is missing!. , 2020, 15, e0236037.	1.7	0
13 14	Title is missing!. , 2020, 15, e0236037. Title is missing!. , 2020, 15, e0236037. Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify	1.7	0
13 14 15	Title is missing!. , 2020, 15, e0236037. Title is missing!. , 2020, 15, e0236037. Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress. Frontiers in Plant Science, 2019, 10, 370. Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant Journal, 2019, 97,		0 0 47

#	Article	IF	Citations
19	Genomic and Genetic Studies of Abiotic Stress Tolerance in Barley. Compendium of Plant Genomes, 2018, , 259-286.	0.3	8
20	Rice calciumâ€dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucroseâ€phosphate synthase and is required for a proper cold stress response. Plant, Cell and Environment, 2017, 40, 1197-1213.	2.8	96
21	The genome of Chenopodium quinoa. Nature, 2017, 542, 307-312.	13.7	569
22	Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. Scientific Reports, 2017, 7, 10624.	1.6	18
23	DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Scientific Reports, 2017, 7, 5968.	1.6	8
24	Evaluating physiological responses of plants to salinity stress. Annals of Botany, 2017, 119, 1-11.	1.4	833
25	Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands. Frontiers in Plant Science, 2017, 8, 138.	1.7	44
26	High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 1414.	1.7	161
27	Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications, 2016, 7, 13342.	5.8	218
28	Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific Reports, 2016, 6, 32586.	1.6	118
29	Comprehensive phenotypic analysis of rice (<i>Oryza sativa</i>) response to salinity stress. Physiologia Plantarum, 2015, 155, 43-54.	2.6	77
30	Salt resistant crop plants. Current Opinion in Biotechnology, 2014, 26, 115-124.	3.3	915
31	Coping with abiotic stress: Proteome changes for crop improvement. Journal of Proteomics, 2013, 93, 145-168.	1.2	93
32	Different evolutionary histories of two cation/proton exchanger gene families in plants. BMC Plant Biology, 2013, 13, 97.	1.6	28
33	New allelic variants found in key rice saltâ€tolerance genes: an association study. Plant Biotechnology Journal, 2013, 11, 87-100.	4.1	120
34	Genetic Diversity and Population Structure in a European Collection of Rice. Crop Science, 2012, 52, 1663-1675.	0.8	67
35	Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 300-304.	0.4	19
36	Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses. Critical Reviews in Plant Sciences, 2011, 30, 329-377.	2.7	178

3

Sonia Negrao

#	Article	IF	CITATION
37	Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theoretical and Applied Genetics, 2011, 123, 881-895.	1.8	71
38	Molecular characterization of the European rice collection in view of association mapping. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 233-235.	0.4	4
39	Integration of genomic tools to assist breeding in the japonica subspecies of rice. Molecular Breeding, 2008, 22, 159-168.	1.0	34
40	Genetic Relatedness of Portuguese Rice Accessions from Diverse Origins as Assessed by Microsatellite Markers. Crop Science, 2007, 47, 879-884.	0.8	44
41	Potential of Waxy gene microsatellite and single-nucleotide polymorphisms to develop japonica varieties with desired amylose levels in rice (Oryza sativa L.). Journal of Cereal Science, 2007, 46, 178-186.	1.8	15