
Sonia Negrao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salt resistant crop plants. Current Opinion in Biotechnology, 2014, 26, 115-124.	3.3	915
2	Evaluating physiological responses of plants to salinity stress. Annals of Botany, 2017, 119, 1-11.	1.4	833
3	The genome of Chenopodium quinoa. Nature, 2017, 542, 307-312.	13.7	569
4	Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant Journal, 2019, 97, 148-163.	2.8	219
5	Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications, 2016, 7, 13342.	5.8	218
6	Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses. Critical Reviews in Plant Sciences, 2011, 30, 329-377.	2.7	178
7	High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 1414.	1.7	161
8	Genomic history and ecology of the geographic spread of rice. Nature Plants, 2020, 6, 492-502.	4.7	143
9	New allelic variants found in key rice saltâ€ŧolerance genes: an association study. Plant Biotechnology Journal, 2013, 11, 87-100.	4.1	120
10	Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific Reports, 2016, 6, 32586.	1.6	118
11	Rice calciumâ€dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucroseâ€phosphate synthase and is required for a proper cold stress response. Plant, Cell and Environment, 2017, 40, 1197-1213.	2.8	96
12	Coping with abiotic stress: Proteome changes for crop improvement. Journal of Proteomics, 2013, 93, 145-168.	1.2	93
13	Comprehensive phenotypic analysis of rice (<i>Oryza sativa</i>) response to salinity stress. Physiologia Plantarum, 2015, 155, 43-54.	2.6	77
14	Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theoretical and Applied Genetics, 2011, 123, 881-895.	1.8	71
15	The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance. Frontiers in Plant Science, 2018, 9, 1402.	1.7	69
16	Genetic Diversity and Population Structure in a European Collection of Rice. Crop Science, 2012, 52, 1663-1675.	0.8	67
17	Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Frontiers in Artificial Intelligence, 2020, 3, 28.	2.0	55
18	Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress, Frontiers in Plant Science, 2019, 10, 370	1.7	47

Sonia Negrao

#	Article	IF	CITATIONS
19	Genetic Relatedness of Portuguese Rice Accessions from Diverse Origins as Assessed by Microsatellite Markers. Crop Science, 2007, 47, 879-884.	0.8	44
20	Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands. Frontiers in Plant Science, 2017, 8, 138.	1.7	44
21	Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands. Plant Physiology, 2020, 182, 534-546.	2.3	44
22	Integration of genomic tools to assist breeding in the japonica subspecies of rice. Molecular Breeding, 2008, 22, 159-168.	1.0	34
23	Different evolutionary histories of two cation/proton exchanger gene families in plants. BMC Plant Biology, 2013, 13, 97.	1.6	28
24	Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PLoS ONE, 2020, 15, e0236037.	1.1	25
25	Phenotyping for waterlogging tolerance in crops: current trends and future prospects. Journal of Experimental Botany, 2022, 73, 5149-5169.	2.4	23
26	Genetic mapping of the early responses to salt stress in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 107, 544-563.	2.8	22
27	Highâ€ŧhroughput 3D modelling to dissect the genetic control of leaf elongation in barley (<i>Hordeum vulgare</i>). Plant Journal, 2019, 98, 555-570.	2.8	20
28	Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 300-304.	0.4	19
29	Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. Scientific Reports, 2017, 7, 10624.	1.6	18
30	Capturing crop adaptation to abiotic stress using image-based technologies. Open Biology, 2022, 12, .	1.5	18
31	Potential of Waxy gene microsatellite and single-nucleotide polymorphisms to develop japonica varieties with desired amylose levels in rice (Oryza sativa L.). Journal of Cereal Science, 2007, 46, 178-186.	1.8	15
32	DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Scientific Reports, 2017, 7, 5968.	1.6	8
33	Genomic and Genetic Studies of Abiotic Stress Tolerance in Barley. Compendium of Plant Genomes, 2018, , 259-286.	0.3	8
34	Molecular characterization of the European rice collection in view of association mapping. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 233-235.	0.4	4
35	Assessing Rice Salinity Tolerance: From Phenomics to Association Mapping. Methods in Molecular Biology, 2021, 2238, 339-375.	0.4	4
36	Editorial: Multi-Disciplinary Approaches to Plant Responses to Climate Change. Frontiers in Plant Science, 2022, 13, 876432.	1.7	2

