Sonia Negrao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1465752/sonia-negrao-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 2,723 20 47 g-index

47 g-index

47 ext. papers ext. citations 6.8 avg, IF

5.48 L-index

#	Paper	IF	Citations
42	Genetic mapping of the early responses to salt stress in Arabidopsis thaliana. <i>Plant Journal</i> , 2021 , 107, 544-563	6.9	3
41	Assessing Rice Salinity Tolerance: From Phenomics to Association Mapping. <i>Methods in Molecular Biology</i> , 2021 , 2238, 339-375	1.4	O
40	Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. <i>Frontiers in Artificial Intelligence</i> , 2020 , 3, 28	3	14
39	Genomic history and ecology of the geographic spread of rice. <i>Nature Plants</i> , 2020 , 6, 492-502	11.5	45
38	Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands. <i>Plant Physiology</i> , 2020 , 182, 534-546	6.6	20
37	Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. <i>PLoS ONE</i> , 2020 , 15, e0236037	3.7	11
36	Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages 2020 , 15, e0236037		
35	Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages 2020 , 15, e0236037		
34	Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages 2020 , 15, e0236037		
33	Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages 2020 , 15, e0236037		
32	Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress. <i>Frontiers in Plant Science</i> , 2019 , 10, 370	6.2	29
31	Salt stress under the scalpel - dissecting the genetics of salt tolerance. <i>Plant Journal</i> , 2019 , 97, 148-163	6.9	104
30	High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare). <i>Plant Journal</i> , 2019 , 98, 555-570	6.9	9
29	Genomic and Genetic Studies of Abiotic Stress Tolerance in Barley. <i>Compendium of Plant Genomes</i> , 2018 , 259-286	0.8	7
28	The Genome Sequence of the Wild Tomato Provides Insights Into Salinity Tolerance. <i>Frontiers in Plant Science</i> , 2018 , 9, 1402	6.2	41
27	Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. <i>Plant, Cell and Environment</i> , 2017 , 40, 1197-1213	8.4	59
26	The genome of Chenopodium quinoa. <i>Nature</i> , 2017 , 542, 307-312	50.4	345

(2008-2017)

Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. <i>Scientific Reports</i> , 2017 , 7, 10624	4.9	11
DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. <i>Scientific Reports</i> , 2017 , 7, 5968	4.9	7
Evaluating physiological responses of plants to salinity stress. <i>Annals of Botany</i> , 2017 , 119, 1-11	4.1	538
Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands. <i>Frontiers in Plant Science</i> , 2017 , 8, 138	6.2	24
Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. <i>Nature Communications</i> , 2016 , 7, 13342	17.4	134
Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. <i>Scientific Reports</i> , 2016 , 6, 32586	4.9	79
High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in. <i>Frontiers in Plant Science</i> , 2016 , 7, 1414	6.2	76
Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. <i>Physiologia Plantarum</i> , 2015 , 155, 43-54	4.6	38
Salt resistant crop plants. Current Opinion in Biotechnology, 2014 , 26, 115-24	11.4	630
Coping with abiotic stress: proteome changes for crop improvement. <i>Journal of Proteomics</i> , 2013 , 93, 145-68	3.9	71
Different evolutionary histories of two cation/proton exchanger gene families in plants. <i>BMC Plant Biology</i> , 2013 , 13, 97	5.3	22
New allelic variants found in key rice salt-tolerance genes: an association study. <i>Plant Biotechnology Journal</i> , 2013 , 11, 87-100	11.6	94
Genetic Diversity and Population Structure in a European Collection of Rice. Crop Science, 2012, 52, 16	63 <u>≥</u> .1467!	5 53
Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. <i>Plant Genetic Resources: Characterisation and Utilisation</i> , 2011 , 9, 300-304	1	14
Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses. <i>Critical Reviews in Plant Sciences</i> , 2011 , 30, 329-377	5.6	126
Targeted association analysis identified japonica rice varieties achieving Na(+)/K (+) homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. <i>Theoretical and Applied Genetics</i> , 2011 , 123, 881-95	6	44
Molecular characterization of the European rice collection in view of association mapping. <i>Plant Genetic Resources: Characterisation and Utilisation</i> , 2011 , 9, 233-235	1	3
Integration of genomic tools to assist breeding in the japonica subspecies of rice. <i>Molecular Breeding</i> , 2008 , 22, 159-168	3.4	18
	DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Scientific Reports, 2017, 7, 5968 Evaluating physiological responses of plants to salinity stress. Annals of Botany, 2017, 119, 1-11 Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands. Frontiers in Plant Science, 2017, 8, 138 Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications, 2016, 7, 13342 Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific Reports, 2016, 6, 32586 High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in. Frontiers in Plant Science, 2016, 7, 1414 Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiologia Plantarum, 2015, 155, 43-54 Salt resistant crop plants. Current Opinion in Biotechnology, 2014, 26, 115-24 Coping with abiotic stress: proteome changes for crop improvement. Journal of Proteomics, 2013, 93, 145-68 Different evolutionary histories of two cation/proton exchanger gene families in plants. BMC Plant Biology, 2013, 13, 97 New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnology Journal, 2013, 11, 87-100 Genetic Diversity and Population Structure in a European Collection of Rice. Crop Science, 2012, 52, 16 Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 300-304 Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses. Critical Reviews in Plant Sciences, 2011, 30, 329-377 Targeted association analysis identified japonica rice varieties achieving Na(+)/K (+) homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theoretical and Applied Genetics, 2011, 123, 881-95 Molecular characterization of the European rice collection	DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Scientific Reports, 2017, 7, 5968 Evaluating physiological responses of plants to salinity stress. Annals of Botany, 2017, 119, 1-11 Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands. Frontiers in Plant Science, 2017, 8, 138 Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications, 2016, 7, 13342 Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific Reports, 2016, 6, 32586 High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in. Frontiers in Plant Science, 2016, 7, 1414 Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiologia Plantarum, 2015, 155, 43-54 Salt resistant crop plants. Current Opinion in Biotechnology, 2014, 26, 115-24 11.4 Coping with abiotic stress: proteome changes for crop improvement. Journal of Proteomics, 2013, 39, 145-68 Different evolutionary histories of two cation/proton exchanger gene families in plants. BMC Plant Biology, 2013, 13, 97 New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnology Journal, 2013, 11, 87-100 Genetic Diversity and Population Structure in a European Collection of Rice. Crop Science, 2012, 52, 1663-167. Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genetic Resources: Characterization and Utilisation, 2011, 9, 300-304 Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses. Critical Reviews in Plant Sciences, 2011, 30, 329-377 Targeted association analysis identified japonica rice varieties achieving Na(+)/K (+) homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theoretical and Applied Genetic Resources: Characterization and Utilisation, 2011, 9, 233-235 Int

7	Genetic Relatedness of Portuguese Rice Accessions from Diverse Origins as Assessed by Microsatellite Markers. <i>Crop Science</i> , 2007 , 47, 879-884	23	
6	Potential of Waxy gene microsatellite and single-nucleotide polymorphisms to develop japonica varieties with desired amylose levels in rice (Oryza sativa L.). <i>Journal of Cereal Science</i> , 2007 , 46, 178-186 ^{3.8}	15	
5	Plant Phenotyping1-14	2	
4	A diversity of traits contributes to salinity tolerance of wild Galapagos tomatoes seedlings	2	
3	Genetic mapping of the early responses to salt stress inArabidopsis thaliana	1	
2	The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance	2	
1	Genomic history and ecology of the geographic spread of rice	3	