Ulrich Mühlenhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO Journal, 2003, 22, 4815-4825.	7.8	344
2	Cytosolic Monothiol Glutaredoxins Function in Intracellular Iron Sensing and Trafficking via Their Bound Iron-Sulfur Cluster. Cell Metabolism, 2010, 12, 373-385.	16.2	263
3	The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Molecular Biology of the Cell, 2012, 23, 1157-1166.	2.1	185
4	Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nature Chemical Biology, 2010, 6, 758-765.	8.0	176
5	The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. European Journal of Cell Biology, 2015, 94, 280-291.	3.6	158
6	Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nature Communications, 2017, 8, 1287.	12.8	144
7	Specialized Function of Yeast Isa1 and Isa2 Proteins in the Maturation of Mitochondrial [4Fe-4S] Proteins. Journal of Biological Chemistry, 2011, 286, 41205-41216.	3.4	143
8	Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nature Communications, 2014, 5, 5013.	12.8	136
9	The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Molecular Biology of the Cell, 2013, 24, 1830-1841.	2.1	122
10	The <scp>J</scp> anus transcription factor <scp>H</scp> ap <scp>X</scp> controls fungal adaptation to both iron starvation and iron excess. EMBO Journal, 2014, 33, 2261-2276.	7.8	121
11	Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Molecular Biology of the Cell, 2013, 24, 1895-1903.	2.1	101
12	The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13735-13740.	7.1	84
13	Compartmentalization of iron between mitochondria and the cytosol and its regulation. European Journal of Cell Biology, 2015, 94, 292-308.	3.6	76
14	<i>Saccharomyces cerevisiae</i> Grx6 and Grx7 Are Monothiol Glutaredoxins Associated with the Early Secretory Pathway. Eukaryotic Cell, 2008, 7, 1415-1426.	3.4	56
15	The Multidomain Thioredoxin-Monothiol Glutaredoxins Represent a Distinct Functional Group. Antioxidants and Redox Signaling, 2011, 15, 19-30.	5.4	54
16	The Basic Leucine Zipper Stress Response Regulator Yap5 Senses High-Iron Conditions by Coordination of [2Fe-2S] Clusters. Molecular and Cellular Biology, 2015, 35, 370-378.	2.3	46
17	The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Molecular Microbiology, 2011, 81, 232-248.	2.5	33
18	Glutaredoxins and iron-sulfur protein biogenesis at the interface of redox biology and iron metabolism. Biological Chemistry, 2020, 401, 1407-1428.	2.5	29

#	Article	IF	CITATIONS
19	Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 240-251.	4.1	10
20	Defects in Mitochondrial Iron–Sulfur Cluster Assembly Induce Cysteine S-Polythiolation on Iron–Sulfur Apoproteins. Antioxidants and Redox Signaling, 2016, 25, 28-40.	5.4	4