Takanobu Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Twoâ€Dimensional Idealized Hadley Circulation Simulation for Global High Resolution Model Development. Journal of Advances in Modeling Earth Systems, 2022, 14, e2021MS002714.	1.3	0
2	Quantifying albedo susceptibility biases in shallow clouds. Atmospheric Chemistry and Physics, 2022, 22, 3303-3319.	1.9	11
3	Gaussian Process Modeling of Heterogeneity and Discontinuities Using Voronoi Tessellations. Technometrics, 2021, 63, 53-63.	1.3	13
4	Aerosol-cloud-climate cooling overestimated by ship-track data. Science, 2021, 371, 485-489.	6.0	55
5	The Energy Exascale Earth System Model Simulations With High Vertical Resolution in the Lower Troposphere. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002239.	1.3	10
6	The Implementation of Framework for Improvement by Vertical Enhancement Into Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002240.	1.3	8
7	From Sugar to Flowers: A Transition of Shallow Cumulus Organization During ATOMIC. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002619.	1.3	19
8	Model evaluation and intercomparison of marine warm low cloud fractions with neural network ensembles. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002625.	1.3	1
9	Realism of Lagrangian Large Eddy Simulations Driven by Reanalysis Meteorology: Tracking a Pocket of Open Cells Under a Biomass Burning Aerosol Layer. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002664.	1.3	6
10	Liquid Water Path Steady States in Stratocumulus: Insights from Process-Level Emulation and Mixed-Layer Theory. Journals of the Atmospheric Sciences, 2020, 77, 2203-2215.	0.6	15
11	Quantification of the Radiative Effect of Aerosol–Cloud Interactions in Shallow Continental Cumulus Clouds. Journals of the Atmospheric Sciences, 2020, 77, 2905-2920.	0.6	12
12	An emulator approach to stratocumulus susceptibility. Atmospheric Chemistry and Physics, 2019, 19, 10191-10203.	1.9	23
13	Cloud droplet growth in shallow cumulus clouds considering 1-D and 3-D thermal radiative effects. Atmospheric Chemistry and Physics, 2019, 19, 6295-6313.	1.9	14
14	Anthropogenic Air Pollution Delays Marine Stratocumulus Breakup to Open Cells. Geophysical Research Letters, 2019, 46, 14135-14144.	1.5	20
15	Aerosolâ€Cloud Interactions in Trade Wind Cumulus Clouds and the Role of Vertical Wind Shear. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12244-12261.	1.2	14
16	Inhomogeneous Mixing in Lagrangian Cloud Models: Effects on the Production of Precipitation Embryos. Journals of the Atmospheric Sciences, 2019, 76, 113-133.	0.6	33
17	Analysis of albedo versus cloud fraction relationships in liquid water clouds using heuristic models and large eddy simulation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7086-7102.	1.2	12
18	Framework for improvement by vertical enhancement: A simple approach to improve representation of low and highâ€level clouds in largeâ€scale models. Journal of Advances in Modeling Earth Systems, 2017, 9, 627-646.	1.3	14

Такалови Үамадисні

#	Article	IF	CITATIONS
19	Mesoscale organization, entrainment, and the properties of a closedâ€cell stratocumulus cloud. Journal of Advances in Modeling Earth Systems, 2017, 9, 2214-2229.	1.3	18
20	Stratocumulus to Cumulus Transition by Drizzle. Journal of Advances in Modeling Earth Systems, 2017, 9, 2333-2349.	1.3	69
21	Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations. Atmospheric Chemistry and Physics, 2016, 16, 5811-5839.	1.9	15
22	New approaches to quantifying aerosol influence on the cloud radiative effect. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5812-5819.	3.3	58
23	On the relationship between open cellular convective cloud patterns and the spatial distribution of precipitation. Atmospheric Chemistry and Physics, 2015, 15, 1237-1251.	1.9	38
24	On the reversibility of transitions between closed and open cellular convection. Atmospheric Chemistry and Physics, 2015, 15, 7351-7367.	1.9	51
25	Stratocumulus to cumulus transition in the presence of elevated smoke layers. Geophysical Research Letters, 2015, 42, 10,478.	1.5	45
26	The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources. Journals of the Atmospheric Sciences, 2014, 71, 574-595.	0.6	72
27	Effect of gradients in biomass burning aerosol on shallow cumulus convective circulations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9948-9964.	1.2	13
28	On the interaction between marine boundary layer cellular cloudiness and surface heat fluxes. Atmospheric Chemistry and Physics, 2014, 14, 61-79.	1.9	24
29	Evaluation of Modeled Stratocumulus-Capped Boundary Layer Turbulence with Shipborne Data. Journals of the Atmospheric Sciences, 2013, 70, 3895-3919.	0.6	13
30	On the size distribution of cloud holes in stratocumulus and their relationship to cloudâ€ŧop entrainment. Geophysical Research Letters, 2013, 40, 2450-2454.	1.5	12
31	Cooling of Entrained Parcels in a Large-Eddy Simulation. Journals of the Atmospheric Sciences, 2012, 69, 1118-1136.	0.6	53
32	Technical note: Largeâ€eddy simulation of cloudy boundary layer with the Advanced Research WRF model. Journal of Advances in Modeling Earth Systems, 2012, 4, .	1.3	52
33	Cloud Modeling Tests of the ULTIMATE–MACHO Scalar Advection Scheme. Monthly Weather Review, 2011, 139, 3248-3264.	0.5	50
34	A Higher-Order Closure Model with an Explicit PBL Top. Journals of the Atmospheric Sciences, 2010, 67, 834-850.	0.6	5
35	Large-Eddy Simulation of Evaporatively Driven Entrainment in Cloud-Topped Mixed Layers. Journals of the Atmospheric Sciences, 2008, 65, 1481-1504.	0.6	71