Irene Londono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465110/publications.pdf

Version: 2024-02-01

687363 642732 35 609 13 23 h-index citations g-index papers 36 36 36 876 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Validation of an in vivo micro-CT-based method to quantify longitudinal bone growth of pubertal rats. Bone, 2022, 154, 116207.	2.9	8
2	Modulatory effect of ILâ€1 inhibition following lipopolysaccharideâ€induced neuroinflammation in neonatal microglia and astrocytes. International Journal of Developmental Neuroscience, 2022, , .	1.6	3
3	Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behavioural Brain Research, 2022, 428, 113884.	2.2	4
4	Alteration of the brain methylation landscape following postnatal inflammatory injury in rat pups. FASEB Journal, 2020, 34, 432-445.	0.5	17
5	Isolated Cyclic Loading During Adolescence Improves Tibial Bone Microstructure and Strength at Adulthood. JBMR Plus, 2020, 4, e10349.	2.7	3
6	Assessing therapeutic response non-invasively in a neonatal rat model of acute inflammatory white matter injury using high-field MRI. Brain, Behavior, and Immunity, 2019, 81, 348-360.	4.1	12
7	The brain's kryptonite: Overview of punctate white matter lesions in neonates. International Journal of Developmental Neuroscience, 2019, 77, 77-88.	1.6	10
8	Experimental and finite element analyses of bone strains in the growing rat tibia induced by in vivo axial compression. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 176-185.	3.1	8
9	Mechanobiological analysis of porcine spines instrumented with intra-vertebral staples. Journal of Musculoskeletal Neuronal Interactions, 2019, 19, 13-20.	0.1	0
10	Can repeated in vivo micro-CT irradiation during adolescence alter bone microstructure, histomorphometry and longitudinal growth in a rodent model?. PLoS ONE, 2018, 13, e0207323.	2.5	22
11	Persistent reduction in sialylation of cerebral glycoproteins following postnatal inflammatory exposure. Journal of Neuroinflammation, 2018, 15, 336.	7.2	20
12	Can the contralateral limb be used as a control during the growing period in a rodent model?. Medical Engineering and Physics, 2018, 58, 31-40.	1.7	6
13	Changes in growth plate extracellular matrix composition and biomechanics following in vitro static versus dynamic mechanical modulation. Journal of Musculoskeletal Neuronal Interactions, 2018, 18, 81-91.	0.1	5
14	In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression. Journal of Biomechanics, 2017, 56, 76-82.	2.1	9
15	Userâ€independent diffusion tensor imaging analysis pipelines in a rat model presenting ventriculomegalia: A comparison study. NMR in Biomedicine, 2017, 30, e3793.	2.8	5
16	Neonatal microglia: The cornerstone of brain fate. Brain, Behavior, and Immunity, 2017, 59, 333-345.	4.1	72
17	Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation. Biomechanics and Modeling in Mechanobiology, 2016, 15, 933-946.	2.8	10
18	Static and dynamic compression application and removal on the intervertebral discs of growing rats. Journal of Orthopaedic Research, 2016, 34, 290-298.	2.3	6

#	Article	IF	CITATIONS
19	New means to assess neonatal inflammatory brain injury. Journal of Neuroinflammation, 2015, 12, 180.	7.2	40
20	Bone growth resumption following in vivo static and dynamic compression removals on rats. Bone, 2015, 81, 662-668.	2.9	2
21	In vivo dynamic loading reduces bone growth without histomorphometric changes of the growth plate. Journal of Orthopaedic Research, 2014, 32, 1129-1136.	2.3	25
22	Imaging of an Inflammatory Injury in the Newborn Rat Brain with Photoacoustic Tomography. PLoS ONE, 2013, 8, e83045.	2.5	24
23	Caspase activation regulates the extracellular export of autophagic vacuoles. Autophagy, 2012, 8, 927-937.	9.1	67
24	In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation. Bone, 2011, 49, 996-1004.	2.9	34
25	Psammomys obesus, a particularly important animal model for the study of the human diabetic nephropathy. Anatomy and Cell Biology, 2011, 44, 176.	1.0	11
26	Growth plate explants respond differently to in vitro static and dynamic loadings. Journal of Orthopaedic Research, 2011, 29, 473-480.	2.3	28
27	Compartmentalization of Pancreatic Secretory Zymogen Granules as Revealed by Low-Voltage Transmission Electron Microscopy. Journal of Histochemistry and Cytochemistry, 2011, 59, 899-907.	2.5	7
28	Glomerular CD34 Expression in Short- and Long-term Diabetes. Journal of Histochemistry and Cytochemistry, 2008, 56, 605-614.	2.5	10
29	Redistribution of Integrins in Tubular Epithelial Cells during Diabetic Glycogen Nephrosis. Nephron Experimental Nephrology, 2004, 98, e22-e30.	2.2	6
30	Apoptosis of Tubular Epithelial Cells in Glycogen Nephrosis During Diabetes. Laboratory Investigation, 2003, 83, 1069-1080.	3.7	45
31	Glomerular Basement Membrane Selective Permeability in Short-term Streptozotocin-induced Diabetic Rats. International Journal of Experimental Diabetes Research, 2000, 1, 19-30.	1.1	11
32	Expression and distribution of adenosine diphosphate-ribosylation factors in the rat kidney111Present address is: Renal Unit & Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, 149, 13th Street, 8th Floor, Boston, MA, 02129, USA. Kidney International, 1999, 55, 1407-1416.	5 . 2	16
33	Receptor-mediated endocytosis in kidney proximal tubules: Recent advances and hypothesis. Electrophoresis, 1997, 18, 2661-2676.	2.4	45
34	Immunocytochemical investigation of the in vivo endocytosis by renal tubular epithelial cells. Microscopy Research and Technique, 1995, 31, 118-127.	2.2	8
35	Distribution of endogenous albumin across the rat aortic wall as revealed by quantitative immunocytochemistry. American Journal of Anatomy, 1989, 186, 407-416.	1.0	10