
Walter Margulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental studies on efficient frequency doubling in glass optical fibers. Optics Letters, 1987, 12, 57.	3.3	149
2	Grating formation in pure silica-core fibers. Optics Letters, 2002, 27, 809.	3.3	73
3	Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids. Optics Letters, 2011, 36, 2548.	3.3	58
4	Large increase in photosensitivity through massive hydroxyl formation. Optics Letters, 2000, 25, 302.	3.3	52
5	All-fiber high repetition rate microfluidic dye laser. Optica, 2015, 2, 186.	9.3	41
6	Phase measurement in frequency-doubling fibers. Optics Letters, 1989, 14, 700.	3.3	40
7	Active mode locking of a XeCl laser. Applied Physics Letters, 1981, 39, 129-131.	3.3	38
8	Investigations of the preparation process for efficient secondâ€harmonic generation in optical fibers. Applied Physics Letters, 1988, 52, 1942-1944.	3.3	38
9	Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes. Optics Express, 2004, 12, 6093.	3.4	34
10	All-fiber polarization switch. Optics Letters, 2007, 32, 614.	3.3	33
11	Study of thermally poled fibers with a two-dimensional model. Optics Express, 2014, 22, 17700.	3.4	33
12	Visible light guidance in silica capillaries by antiresonant reflection. Optics Express, 2013, 21, 29217.	3.4	27
13	Four-photon fiber laser. Optics Letters, 1987, 12, 519.	3.3	24
14	Real-time distributed fiber microphone based on phase-OTDR. Optics Express, 2016, 24, 29597.	3.4	23
15	Microsecond switching of plasmonic nanorods in an all-fiber optofluidic component. Optica, 2017, 4, 864.	9.3	20
16	Continuously tunable, narrow-linewidth laser based on a semiconductor optical amplifier and a linearly chirped fiber Bragg grating. Optics Express, 2019, 27, 14213.	3.4	20
17	A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Scientific Reports, 2022, 12, 3539.	3.3	20
18	Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator. Optics Express, 2012, 20, 2905.	3.4	19

WALTER MARGULIS

#	Article	IF	CITATIONS
19	Time evolution of frozen-in field during poling of fiber with alloy electrodes. Optics Express, 2005, 13, 3438.	3.4	15
20	High-speed electrical switching in optical fibers [Invited]. Applied Optics, 2011, 50, E65.	2.1	14
21	All-fiber Kerr cell. Optics Letters, 2012, 37, 3288.	3.3	14
22	Fabrication and Optical Characterization of Silica Optical Fibers Containing Gold Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 370-375.	8.0	14
23	Fiber-based distributed bolometry. Optics Express, 2019, 27, 4317.	3.4	14
24	Stimulated Raman–Kerr scattering in an integrated nonlinear optofluidic fiber arrangement. Optics Letters, 2014, 39, 5407.	3.3	13
25	All-Fiber Optofluidic Component to Combine Light and Fluid. IEEE Photonics Technology Letters, 2014, 26, 1031-1033.	2.5	12
26	Optical creation and erasure of the linear electrooptical effect in silica fiber. Optics Express, 2015, 23, 18060.	3.4	12
27	Hybrid electronically addressable random fiber laser. Optics Express, 2020, 28, 23388.	3.4	12
28	A fiber optic system for detection and collection of micrometer-size particles. Optics Express, 2014, 22, 21480.	3.4	11
29	Widely tunable fiber-coupled single-frequency Er-Yb:Glass laser. Applied Optics, 2003, 42, 4327.	2.1	10
30	Time evolution of the second-order nonlinear distribution of poled Infrasil samples during annealing experiments. Optics Express, 2006, 14, 12984.	3.4	10
31	Pulse selection at 1 MHz with electrooptic fiber switch. Optics Express, 2012, 20, 9465.	3.4	10
32	Digital electric field induced switching of plasmonic nanorods using an electro-optic fluid fiber. Applied Physics Letters, 2017, 111, .	3.3	10
33	Evaluation of Pearson correlation coefficient and Parisi parameter of replica symmetry breaking in a hybrid electronically addressable random fiber laser. Optics Express, 2021, 29, 24422.	3.4	10
34	Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber. Optics Express, 2012, 20, 28049.	3.4	9
35	Temperature characteristics of the birefringence properties of filled side-hole fibers. Applied Optics, 2013, 52, 5208.	1.8	9
36	Linear electro-optical effect in silica fibers poled with ultraviolet lamp. Optics Express, 2019, 27, 14893.	3.4	9

WALTER MARGULIS

#	Article	IF	CITATIONS
37	All-fiber single-pulse selection and nanosecond gating. Optics Letters, 2009, 34, 1024.	3.3	7
38	Intracavity interrogation of an array of fiber Bragg gratings. Optics Express, 2021, 29, 111.	3.4	7
39	A CPW linear resonator method for the microwave characterization of high dielectric constant films. Microwave and Optical Technology Letters, 2007, 49, 521-524.	1.4	6
40	Raman probes based on optically-poled double-clad fiber and coupler. Optics Express, 2012, 20, 28563.	3.4	6
41	Switching and dynamic wavelength conversion in a fiber grating cavity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 155.	2.1	6
42	C-cavity fiber laser employing a chirped fiber Bragg grating for electrically gated wavelength tuning. Optics Express, 2020, 28, 9208.	3.4	6
43	The Effect of the Electrode Curvature on the Field in Internal Electrode Fibers. IEEE Photonics Technology Letters, 2015, 27, 2131-2133.	2.5	5
44	Transmission-line transformers in multilayered high-dielectric-constant thin-film structures. Microwave and Optical Technology Letters, 2005, 47, 290-293.	1.4	3
45	Monolithic Interferometers Using Gemini Fiber. IEEE Photonics Technology Letters, 2011, 23, 1001-1003.	2.5	3
46	Ferrofluid-infiltrated optical fibers for shear-sensing smart pads. SPIE Newsroom, 0, , .	0.1	3
47	All-Fiber Nanosecond Gating for Time-Resolved Spectral Analysis. IEEE Photonics Technology Letters, 2016, 28, 829-832.	2.5	2
48	Experimental characterization of a planar transmissionâ€line transformer in multilayered high dielectric constant film structure. Microwave and Optical Technology Letters, 2010, 52, 1337-1340.	1.4	1
49	Microstructured optical fibre Bragg grating modulator employing an infiltrated ferrofluid. , 2011, , .		1
50	Nanosecond monolithic Mach-Zehnder fiber switch. Optics Express, 2012, 20, 29309.	3.4	1
51	Hermetic Carbon Coatings for Electro-Thermal All-Fiber Phase Modulators. Journal of Lightwave Technology, 2019, 37, 4567-4572.	4.6	1
52	Plasmonics for the Characterization of Metal Organic Films and Nanoparticles. , 2019, , 223-259.		1
53	A shear-displacement sensor based on a ferrofluidic defected microstructured optical fibre Bragg grating. , 2012, , .		1
54	Fully Spliced Optofluidic Fiber Arrangement. , 2013, , .		1

Fully Spliced Optofluidic Fiber Arrangement. , 2013, , . 54

#	Article	IF	CITATIONS
55	Grating formation in pure silica fibers. , 2001, , BThC9.		Ο
56	High-Speed Fiber Switches. AIP Conference Proceedings, 2008, , .	0.4	0
57	Electrostatic trick might affect human body. Physics Today, 2010, 63, 10-10.	0.3	0
58	Spectral tuning of Microstructured Optical Fibre Bragg gratings utilizing ferrofluids. , 2010, , .		0
59	Integration of optoelectronics into fibres enhances textiles. Nature, 2018, 560, 170-171.	27.8	0
60	Characterization of the microstructures of specialty optical fibers for electric-field sensing by propagation-based x-ray phase-contrast microtomography. Measurement Science and Technology, 2021, 32, 065401.	2.6	0
61	Stimulated Raman-Kerr scattering in an integrated nonlinear optofluidic fiber arrangement. , 2014, , .		0
62	Pockels fibers by optical poling. , 2015, , .		0
63	The C-cavity, a highly versatile and simple laser design. EPJ Web of Conferences, 2020, 243, 11001.	0.3	0
64	Electrooptic control of the modal distribution in a silicate fiber. Optics Express, 2022, 30, 12474.	3.4	0