Stefano Caprasecca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1465019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of Stop Sign Violations From Dashcam Data. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 5411-5420.	8.0	5
2	Fault detection in non-reporting Vehicle Tracking Units. , 2019, , .		0
3	On the description of the environment polarization response to electronic transitions. International Journal of Quantum Chemistry, 2019, 119, e25711.	2.0	25
4	Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria. Journal of Physical Chemistry Letters, 2018, 9, 6892-6899.	4.6	55
5	A polarizable QM/MM description of environment effects on NMR shieldings: from solvated molecules to pigment〓protein complexes. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	8
6	Shaping excitons in light-harvesting proteins through nanoplasmonics. Chemical Science, 2018, 9, 6219-6227.	7.4	9
7	A quantum chemical investigation of the solvatochromism of a phthalocyanine within a lipid bilayer: Comparison between continuum and atomistic models. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 42-48.	3.9	4
8	Coupling Real-Time Time-Dependent Density Functional Theory with Polarizable Force Field. Journal of Physical Chemistry Letters, 2017, 8, 5283-5289.	4.6	25
9	Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding. Journal of Chemical Theory and Computation, 2017, 13, 4025-4033.	5.3	81
10	Excited-State Gradients in Polarizable QM/MM Models: An Induced Dipole Formulation. Journal of Chemical Theory and Computation, 2017, 13, 3778-3786.	5.3	23
11	Theoretical description of protein field effects on electronic excitations of biological chromophores. Journal of Physics Condensed Matter, 2017, 29, 013002.	1.8	10
12	Efficient Photoinduced Charge Separation in a BODIPY–C ₆₀ Dyad. Journal of Physical Chemistry C, 2016, 120, 16526-16536.	3.1	25
13	Control of Coherences and Optical Responses of Pigment–Protein Complexes by Plasmonic Nanoantennae. Journal of Physical Chemistry Letters, 2016, 7, 2189-2196.	4.6	14
14	Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations. Physical Chemistry Chemical Physics, 2016, 18, 11288-11296.	2.8	21
15	An <i>Ab Initio</i> Description of the Excitonic Properties of LH2 and Their Temperature Dependence. Journal of Physical Chemistry B, 2016, 120, 11348-11359.	2.6	64
16	A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations. Journal of Chemical Theory and Computation, 2016, 12, 3654-3661.	5.3	136
17	Achieving Linear Scaling in Computational Cost for a Fully Polarizable MM/Continuum Embedding. Journal of Chemical Theory and Computation, 2015, 11, 694-704.	5.3	45
18	Plasmon Enhanced Light Harvesting: Multiscale Modeling of the FMO Protein Coupled with Gold Nanoparticles. Journal of Physical Chemistry A, 2015, 119, 5197-5206.	2.5	18

STEFANO CAPRASECCA

#	Article	IF	CITATIONS
19	Negative solvatochromism of push–pull biphenyl compounds: a theoretical study. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	6
20	Combined Experimental and Theoretical Study of Efficient and Ultrafast Energy Transfer in a Molecular Dyad. Journal of Physical Chemistry C, 2014, 118, 23476-23486.	3.1	29
21	Geometry Optimization in Polarizable QM/MM Models: The Induced Dipole Formulation. Journal of Chemical Theory and Computation, 2014, 10, 1588-1598.	5.3	52
22	Excitation Energy Transfer in Donor-Bridge-Acceptor Systems: A Combined Quantum-Mechanical/Classical Analysis of the Role of the Bridge and the Solvent. Journal of Physical Chemistry A, 2014, 118, 6484-6491.	2.5	17
23	Dissecting the Nature of Exciton Interactions in Ethyne-Linked Tetraarylporphyrin Arrays. Journal of Physical Chemistry C, 2013, 117, 12423-12431.	3.1	6
24	Toward a Unified Modeling of Environment and Bridge-Mediated Contributions to Electronic Energy Transfer: A Fully Polarizable QM/MM/PCM Approach. Journal of Chemical Theory and Computation, 2012, 8, 4462-4473.	5.3	69
25	Quantum mechanical study of the solvent-dependence of electronic energy transfer rates in a Bodipy closely-spaced dyad. Photochemical and Photobiological Sciences, 2011, 10, 1602-1609.	2.9	6
26	Theoretical Investigation of the Mechanism and Dynamics of Intramolecular Coherent Resonance Energy Transfer in Soft Molecules: A Case Study of Dithia-anthracenophane. Journal of the American Chemical Society, 2010, 132, 16911-16921.	13.7	24
27	Low energy electron collisions with small molecular clusters. Journal of Physics: Conference Series, 2009, 194, 132010.	0.4	0