Thomas Burdyny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1464968/publications.pdf

Version: 2024-02-01

209 265 98,316 520 147 citations h-index papers

g-index 537 537 537 47435 docs citations times ranked citing authors all docs

298

#	Article	IF	CITATIONS
1	Synthesis, Applications, and Prospects of Quantumâ€Dotâ€inâ€Perovskite Solids. Advanced Energy Materials, 2022, 12, 2100774.	10.2	39
2	The Impact of Ion Migration on the Electroâ€Optic Effect in Hybrid Organic–Inorganic Perovskites. Advanced Functional Materials, 2022, 32, 2107939.	7.8	7
3	Efficient Tandem Quantumâ€Dot LEDs Enabled by An Inorganic Semiconductorâ€Metalâ€Dielectric Interconnecting Layer Stack. Advanced Materials, 2022, 34, e2108150.	11.1	53
4	Guanidinium-Pseudohalide Perovskite Interfaces Enable Surface Reconstruction of Colloidal Quantum Dots for Efficient and Stable Photovoltaics. ACS Nano, 2022, 16, 1649-1660.	7.3	18
5	Precursor Tailoring Enables Alkylammonium Tin Halide Perovskite Phosphors for Solidâ€State Lighting. Advanced Functional Materials, 2022, 32, .	7.8	17
6	All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603, 73-78.	13.7	544
7	Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nature Biomedical Engineering, 2022, 6, 108-117.	11.6	31
8	Conjugated polymers with controllable interfacial order and energetics enable tunable heterojunctions in organic and colloidal quantum dot photovoltaics. Journal of Materials Chemistry A, 2022, 10, 1788-1801.	5.2	6
9	Concentrated Ethanol Electrosynthesis from CO ₂ via a Porous Hydrophobic Adlayer. ACS Applied Materials & Discrete Applied & Discrete	4.0	15
10	Electrochemical CO2 reduction in membrane-electrode assemblies. CheM, 2022, 8, 663-692.	5.8	86
11	Efficient Tandem Quantumâ€Dot LEDs Enabled by An Inorganic Semiconductorâ€Metalâ€Dielectric Interconnecting Layer Stack (Adv. Mater. 4/2022). Advanced Materials, 2022, 34, .	11.1	0
12	Editorial for the Special Issue: Dimensionality of Emerging Materials and Energy. Advanced Energy Materials, 2022, 12, .	10.2	0
13	A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nature Communications, 2022, 13, 819.	5.8	83
14	Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nature Energy, 2022, 7, 170-176.	19.8	96
15	Immobilization strategies for porphyrin-based molecular catalysts for the electroreduction of CO ₂ . Journal of Materials Chemistry A, 2022, 10, 7626-7636.	5.2	22
16	Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nature Catalysis, 2022, 5, 185-192.	16.1	40
17	Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nature Energy, 2022, 7, 130-143.	19.8	237
18	Wide-Bandgap Perovskite Quantum Dots in Perovskite Matrix for Sky-Blue Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 4009-4016.	6.6	92

#	Article	IF	CITATIONS
19	Controlled Crystal Plane Orientations in the ZnO Transport Layer Enable Highâ€Responsivity, Lowâ€Darkâ€Current Infrared Photodetectors. Advanced Materials, 2022, 34, e2200321.	11.1	21
20	Dualâ€Phase Regulation for Highâ€Efficiency Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	33
21	In Situ Inorganic Ligand Replenishment Enables Bandgap Stability in Mixedâ€Halide Perovskite Quantum Dot Solids. Advanced Materials, 2022, 34, e2200854.	11.1	82
22	Polymer Modification of Surface Electronic Properties of Electrocatalysts. ACS Energy Letters, 2022, 7, 1586-1593.	8.8	13
23	Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nature Photonics, 2022, 16, 352-358.	15.6	233
24	Rapid On-Cell Selection of High-Performance Human Antibodies. ACS Central Science, 2022, 8, 102-109.	5.3	6
25	Ga doping disrupts C-C coupling and promotes methane electroproduction on CuAl catalysts. Chem Catalysis, 2022, 2, 908-916.	2.9	24
26	Energy Transfer between Size-Controlled CsPbl ₃ Quantum Dots for Light-Emitting Diode Application. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17691-17697.	4.0	9
27	Overcoming Nitrogen Reduction to Ammonia Detection Challenges: The Case for Leapfrogging to Gas Diffusion Electrode Platforms. ACS Catalysis, 2022, 12, 5726-5735.	5.5	24
28	Modeling the Local Environment within Porous Electrode during Electrochemical Reduction of Bicarbonate. Industrial & Engineering Chemistry Research, 2022, 61, 10461-10473.	1.8	25
29	Carbon-efficient carbon dioxide electrolysers. Nature Sustainability, 2022, 5, 563-573.	11.5	95
30	Characterizing CO ₂ Reduction Catalysts on Gas Diffusion Electrodes: Comparing Activity, Selectivity, and Stability of Transition Metal Catalysts. ACS Applied Energy Materials, 2022, 5, 5983-5994.	2.5	23
31	High-Throughput Evaluation of Emission and Structure in Reduced-Dimensional Perovskites. ACS Central Science, 2022, 8, 571-580.	5.3	6
32	Organic–inorganic hybrid perovskite scintillators for mixed field radiation detection. InformaÄnÃ- Materiály, 2022, 4, .	8.5	25
33	Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting. Nano Letters, 2022, 22, 4774-4783.	4.5	13
34	Single‣ayer Sheets of Alkylammonium Lead Iodide Perovskites with Tunable and Stable Green Emission for White Lightâ€Emitting Devices. Advanced Optical Materials, 2022, 10, .	3.6	2
35	A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis. Joule, 2022, 6, 1333-1343.	11.7	51
36	Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading. Nature Communications, 2022, 13 , .	5.8	37

#	Article	IF	CITATIONS
37	CO ₂ Electrolysis via Surface-Engineering Electrografted Pyridines on Silver Catalysts. ACS Catalysis, 2022, 12, 7862-7876.	5.5	21
38	Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nature Communications, 2022, 13 , .	5.8	81
39	High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nature Catalysis, 2022, 5, 564-570.	16.1	197
40	Mapping Spatial and Temporal Electrochemical Activity of Water and CO ₂ Electrolysis on Gas-Diffusion Electrodes Using Infrared Thermography. ACS Energy Letters, 2022, 7, 2410-2419.	8.8	14
41	Space-Resolved Mapping of Catalytic Activity in Electrolysers By Infrared Imaging. ECS Meeting Abstracts, 2022, MA2022-01, 1581-1581.	0.0	0
42	Catalyst Regeneration via Chemical Oxidation Enables Long-Term Electrochemical Carbon Dioxide Reduction. Journal of the American Chemical Society, 2022, 144, 13254-13265.	6.6	30
43	Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nature Biomedical Engineering, 2021, 5, 41-52.	11.6	40
44	Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO ₂ Reduction. ACS Energy Letters, 2021, 6, 33-40.	8.8	221
45	CO ₂ Electroreduction to Formate at a Partial Current Density of 930 mA cm ^{â€"2} with InP Colloidal Quantum Dot Derived Catalysts. ACS Energy Letters, 2021, 6, 79-84.	8.8	100
46	Electrochemical upgrade of CO2 from amine capture solution. Nature Energy, 2021, 6, 46-53.	19.8	129
47	Deepâ€Blue Perovskite Singleâ€Mode Lasing through Efficient Vaporâ€Assisted Chlorination. Advanced Materials, 2021, 33, e2006697.	11.1	30
48	Linear Electroâ€Optic Modulation in Highly Polarizable Organic Perovskites. Advanced Materials, 2021, 33, e2006368.	11.1	20
49	3Dâ€Printable Fluoropolymer Gas Diffusion Layers for CO ₂ Electroreduction. Advanced Materials, 2021, 33, e2003855.	11.1	65
50	Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing. Journal of the American Chemical Society, 2021, 143, 1722-1727.	6.6	156
51	The role of electrode wettability in electrochemical reduction of carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 19369-19409.	5. 2	95
52	An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics. Nature Communications, 2021, 12, 670.	5.8	58
53	Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nature Energy, 2021, 6, 167-175.	19.8	164
54	Suppressing the liquid product crossover in electrochemical CO ₂ reduction. SmartMat, 2021, 2, 12-16.	6.4	90

#	Article	IF	Citations
55	Ethylene Electrosynthesis: A Comparative Techno-economic Analysis of Alkaline vs Membrane Electrode Assembly vs CO ₂ –CO–C ₂ H ₄ Tandems. ACS Energy Letters, 2021, 6, 997-1002.	8.8	129
56	Self-Cleaning CO ₂ Reduction Systems: Unsteady Electrochemical Forcing Enables Stability. ACS Energy Letters, 2021, 6, 809-815.	8.8	159
57	Designing anion exchange membranes for CO2 electrolysers. Nature Energy, 2021, 6, 339-348.	19.8	209
58	Grain Transformation and Degradation Mechanism of Formamidinium and Cesium Lead Iodide Perovskite under Humidity and Light. ACS Energy Letters, 2021, 6, 934-940.	8.8	90
59	Accelerated Discovery of Optoelectronic Materials. ACS Photonics, 2021, 8, 699-701.	3.2	1
60	Solventâ€Assisted Kinetic Trapping in Quaternary Perovskites. Advanced Materials, 2021, 33, e2008690.	11.1	6
61	Inside Front Cover: Volume 2 Issue 1. SmartMat, 2021, 2, iii.	6.4	1
62	Reagentless biomolecular analysis using a molecular pendulum. Nature Chemistry, 2021, 13, 428-434.	6.6	70
63	Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule, 2021, 5, 706-719.	11.7	158
64	Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550Ânm. Matter, 2021, 4, 1042-1053.	5.0	88
65	Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 6482-6490.	6.6	204
66	Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nature Communications, 2021, 12, 2191.	5.8	77
67	Dopant-Assisted Matrix Stabilization Enables Thermoelectric Performance Enhancement in n-Type Quantum Dot Films. ACS Applied Materials & Interfaces, 2021, 13, 18999-19007.	4.0	3
68	Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Metal-Free Perovsk	4.0	12
69	Microbial Electrosynthesis: Where Do We Go from Here?. Trends in Biotechnology, 2021, 39, 359-369.	4.9	100
70	Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature Communications, 2021, 12, 2808.	5.8	91
71	Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nature Communications, 2021, 12, 2932.	5.8	97
72	Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nature Communications, 2021, 12, 3387.	5.8	70

#	Article	IF	CITATIONS
73	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbI 3 Perovskite. Angewandte Chemie, 2021, 133, 16300-16306.	1.6	1
74	CO ₂ electrolysis to multicarbon products in strong acid. Science, 2021, 372, 1074-1078.	6.0	541
7 5	Reply to: Perovskite decomposition and missing crystal planes in HRTEM. Nature, 2021, 594, E8-E9.	13.7	2
76	Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nature Communications, 2021, 12, 3472.	5.8	89
77	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbl ₃ Perovskite. Angewanc Chemie - International Edition, 2021, 60, 16164-16170.	lte 7.2	210
78	Toward Stable Monolithic Perovskite/Silicon Tandem Photovoltaics: A Six-Month Outdoor Performance Study in a Hot and Humid Climate. ACS Energy Letters, 2021, 6, 2944-2951.	8.8	42
79	Single Pass CO ₂ Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO ₂ Regeneration. ACS Energy Letters, 2021, 6, 2952-2959.	8.8	155
80	Solvent Engineering of Colloidal Quantum Dot Inks for Scalable Fabrication of Photovoltaics. ACS Applied Materials & Document (2011), 13, 36992-37003.	4.0	17
81	Gold Adparticles on Silver Combine Low Overpotential and High Selectivity in Electrochemical CO ₂ Conversion. ACS Applied Energy Materials, 2021, 4, 7504-7512.	2.5	18
82	Facetâ€Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors. Advanced Materials, 2021, 33, e2101056.	11.1	42
83	Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions. Nature Communications, 2021, 12, 4296.	5.8	23
84	Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III–V Colloidal Quantum Dots. Nano Letters, 2021, 21, 6057-6063.	4.5	34
85	One-Step Synthesis of Snl ₂ \hat{A} ·(DMSO) _{<i>x</i>} Adducts for High-Performance Tin Perovskite Solar Cells. Journal of the American Chemical Society, 2021, 143, 10970-10976.	6.6	280
86	Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers. Advanced Materials, 2021, 33, e2103394.	11.1	99
87	Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. Cell Reports Physical Science, 2021, 2, 100522.	2.8	38
88	Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15, 656-669.	15.6	136
89	Quantum Dot Selfâ€Assembly Enables Lowâ€Threshold Lasing. Advanced Science, 2021, 8, e2101125.	5.6	28
90	Semiconductor quantum dots: Technological progress and future challenges. Science, 2021, 373, .	6.0	600

#	Article	IF	CITATIONS
91	Colloidal quantum dot electronics. Nature Electronics, 2021, 4, 548-558.	13.1	192
92	Abnormal Phase Transition and Band Renormalization of Guanidinium-Based Organic–Inorganic Hybrid Perovskite. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44964-44971.	4.0	8
93	In Situ Formation of Nano Ni–Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities. Advanced Materials, 2021, 33, e2103812.	11.1	78
94	Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C ₂ and C ₃ Product Streams. ACS Energy Letters, 2021, 6, 3538-3544.	8.8	36
95	Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule, 2021, 5, 2742-2753.	11.7	37
96	Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nature Communications, 2021, 12, 5223.	5.8	145
97	Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix. Journal of the American Chemical Society, 2021, 143, 15606-15615.	6.6	94
98	Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light: Science and Applications, 2021, 10, 180.	7.7	23
99	Ultrasensitive Detection and Depletion of Rare Leukemic B Cells in T Cell Populations via Immunomagnetic Cell Ranking. Analytical Chemistry, 2021, 93, 2327-2335.	3.2	10
100	Control Over Ligand Exchange Reactivity in Hole Transport Layer Enables High-Efficiency Colloidal Quantum Dot Solar Cells. ACS Energy Letters, 2021, 6, 468-476.	8.8	32
101	Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy and Environmental Science, 2021, 14, 4377-4390.	15.6	79
102	Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes?. Energy and Environmental Science, 2021, 14, 2535-2548.	15.6	162
103	A microfluidic platform enables comprehensive gene expression profiling of mouse retinal stem cells. Lab on A Chip, 2021, 21, 4464-4476.	3.1	3
104	Thiophene- and selenophene-based conjugated polymeric mixed ionic/electronic conductors. Journal of Chemical Physics, 2021, 155, 134704.	1.2	2
105	Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers. Journal of the American Chemical Society, 2021, 143, 17226-17235.	6.6	43
106	Boride-derived oxygen-evolution catalysts. Nature Communications, 2021, 12, 6089.	5.8	51
107	Recombination Dynamics in PbS Nanocrystal Quantum Dot Solar Cells Studied through Drift–Diffusion Simulations. ACS Applied Electronic Materials, 2021, 3, 4977-4989.	2.0	8
108	Early Transition-Metal-Based Binary Oxide/Nitride for Efficient Electrocatalytic Hydrogen Evolution from Saline Water in Different pH Environments. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53702-53716.	4.0	22

#	Article	IF	Citations
109	Defect Tolerance of Mixed B-Site Organic–Inorganic Halide Perovskites. ACS Energy Letters, 2021, 6, 4220-4227.	8.8	30
110	Cation-Driven Increases of CO ₂ Utilization in a Bipolar Membrane Electrode Assembly for CO ₂ Electrolysis. ACS Energy Letters, 2021, 6, 4291-4298.	8.8	88
111	Rigid Conjugated Diamine Templates for Stable Dion–Jacobson-Type Two-Dimensional Perovskites. Journal of the American Chemical Society, 2021, 143, 19901-19908.	6.6	39
112	Downstream of the CO ₂ Electrolyzer: Assessing the Energy Intensity of Product Separation. ACS Energy Letters, 2021, 6, 4405-4412.	8.8	53
113	Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599, 594-598.	13.7	358
114	Bound State in the Continuum in Nanoantenna-Coupled Slab Waveguide Enables Low-Threshold Quantum-Dot Lasing. Nano Letters, 2021, 21, 9754-9760.	4.5	30
115	Spatial reactant distribution in CO ₂ electrolysis: balancing CO ₂ utilization and faradaic efficiency. Sustainable Energy and Fuels, 2021, 5, 6040-6048.	2.5	15
116	Active Sulfur Sites in Semimetallic Titanium Disulfide Enable CO ₂ Electroreduction. ACS Catalysis, 2020, 10, 66-72.	5.5	25
117	Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient. Advanced Materials, 2020, 32, e1906497.	11.1	47
118	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	5.8	147
119	Oxygen-tolerant electroproduction of C ₂ products from simulated flue gas. Energy and Environmental Science, 2020, 13, 554-561.	15.6	113
120	Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Applied Energy, 2020, 261, 114305.	5.1	65
121	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	16.1	325
122	Spatial Collection in Colloidal Quantum Dot Solar Cells. Advanced Functional Materials, 2020, 30, 1908200.	7.8	24
123	Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nature Catalysis, 2020, 3, 14-22.	16.1	120
124	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	15.6	303
125	Narrow Emission from Rb ₃ Sb ₂ I ₉ Nanoparticles. Advanced Optical Materials, 2020, 8, 1901606.	3.6	18
126	Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications, 2020, 11, 103.	5.8	181

#	Article	IF	Citations
127	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	16.1	390
128	All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. Accounts of Materials Research, 2020, 1, 63-76.	5.9	57
129	Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. Journal of Physical Chemistry C, 2020, 124, 24379-24390.	1.5	17
130	Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Science Advances, 2020, 6, .	4.7	135
131	Autonomous atmospheric water seeping MOF matrix. Science Advances, 2020, 6, .	4.7	120
132	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5, 870-880.	19.8	497
133	Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nature Communications, 2020, 11 , 3674.	5.8	112
134	Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Accounts of Chemical Research, 2020, 53, 1445-1457.	7.6	18
135	Liquid–Solid Boundaries Dominate Activity of CO ₂ Reduction on Gas-Diffusion Electrodes. ACS Catalysis, 2020, 10, 14093-14106.	5.5	114
136	Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nature Communications, 2020, 11, 6190.	5.8	93
137	Structural Distortion and Bandgap Increase of Two-Dimensional Perovskites Induced by Trifluoromethyl Substitution on Spacer Cations. Journal of Physical Chemistry Letters, 2020, 11, 10144-10149.	2.1	22
138	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	23.3	136
139	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nature Communications, 2020, 11, 3685.	5.8	72
140	Bifunctional Surface Engineering on SnO ₂ Reduces Energy Loss in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2796-2801.	8.8	239
141	Copper and silver gas diffusion electrodes performing CO ₂ reduction studied through <i>operando</i> X-ray absorption spectroscopy. Catalysis Science and Technology, 2020, 10, 5870-5885.	2.1	13
142	High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating. ACS Energy Letters, 2020, 5, 3034-3040.	8.8	134
143	High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Letters, 2020, 5, 2811-2818.	8.8	106
144	Bromine Incorporation and Suppressed Cation Rotation in Mixed-Halide Perovskites. ACS Nano, 2020, 14, 15107-15118.	7.3	23

#	Article	IF	CITATIONS
145	A Tuned Alternating D–A Copolymer Holeâ€Transport Layer Enables Colloidal Quantum Dot Solar Cells with Superior Fill Factor and Efficiency. Advanced Materials, 2020, 32, e2004985.	11.1	56
146	Colloidal Quantum Dot Solar Cell Band Alignment using Two-Step Ionic Doping., 2020, 2, 1583-1589.		15
147	Efficient and Stable Colloidal Quantum Dot Solar Cells with a Greenâ€Solvent Holeâ€Transport Layer. Advanced Energy Materials, 2020, 10, 2002084.	10.2	23
148	Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices. Nature Communications, 2020, 11, 4814.	5.8	48
149	Monolithic Organic/Colloidal Quantum Dot Hybrid Tandem Solar Cells via Buffer Engineering. Advanced Materials, 2020, 32, e2004657.	11.1	16
150	CO ₂ Electroreduction to Methane at Production Rates Exceeding 100 mA/cm ² . ACS Sustainable Chemistry and Engineering, 2020, 8, 14668-14673.	3.2	41
151	Dual Coordination of Ti and Pb Using Bilinkable Ligands Improves Perovskite Solar Cell Performance and Stability. Advanced Functional Materials, 2020, 30, 2005155.	7.8	33
152	Suppression of Auger Recombination by Gradient Alloying in InAs/CdSe/CdS QDs. Chemistry of Materials, 2020, 32, 7703-7709.	3.2	15
153	Intermediate Binding Control Using Metal–Organic Frameworks Enhances Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 21513-21521.	6.6	133
154	InP-Quantum-Dot-in-ZnS-Matrix Solids for Thermal and Air Stability. Chemistry of Materials, 2020, 32, 9584-9590.	3.2	8
155	Nanostructured Architectures Promote the Mesenchymal–Epithelial Transition for Invasive Cells. ACS Nano, 2020, 14, 5324-5336.	7.3	17
156	Metalâ€Free Hydrogenâ€Bonded Polymers Mimic Noble Metal Electrocatalysts. Advanced Materials, 2020, 32, e1902177.	11.1	24
157	Mechanisms of LiF Interlayer Enhancements of Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 4213-4220.	2.1	12
158	Thiophene Cation Intercalation to Improve Bandâ€Edge Integrity in Reducedâ€Dimensional Perovskites. Angewandte Chemie - International Edition, 2020, 59, 13977-13983.	7.2	36
159	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy, 2020, 5, 478-486.	19.8	363
160	Thiophene Cation Intercalation to Improve Bandâ€Edge Integrity in Reducedâ€Dimensional Perovskites. Angewandte Chemie, 2020, 132, 14081-14087.	1.6	16
161	Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Science Advances, 2020, 6, eaay7629.	4.7	28
162	Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581, 178-183.	13.7	807

#	Article	IF	Citations
163	Multiple Self-Trapped Emissions in the Lead-Free Halide Cs ₃ Cu ₂ I ₅ . Journal of Physical Chemistry Letters, 2020, 11, 4326-4330.	2.1	79
164	High-Throughput Screening of Antisolvents for the Deposition of High-Quality Perovskite Thin Films. ACS Applied Materials & Deposition of High-Quality Perovskite Thin Films.	4.0	11
165	Colloidal Quantum Dot Photovoltaics Using Ultrathin, Solution-Processed Bilayer In ₂ O ₃ /ZnO Electron Transport Layers with Improved Stability. ACS Applied Energy Materials, 2020, 3, 5135-5141.	2.5	13
166	Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science, 2020, 368, 1228-1233.	6.0	196
167	Micron Thick Colloidal Quantum Dot Solids. Nano Letters, 2020, 20, 5284-5291.	4.5	47
168	Stable, Bromine-Free, Tetragonal Perovskites with $1.7~\rm eV$ Bandgaps via A-Site Cation Substitution., 2020, $2,869-872.$		18
169	Dimensional Mixing Increases the Efficiency of 2D/3D Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 5115-5119.	2.1	34
170	Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells. Joule, 2020, 4, 1542-1556.	11.7	143
171	A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Advanced Materials, 2020, 32, e1906199.	11.1	59
172	Single-Precursor Intermediate Shelling Enables Bright, Narrow Line Width InAs/InZnP-Based QD Emitters. Chemistry of Materials, 2020, 32, 2919-2925.	3.2	13
173	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	6.6	116
174	Chiral-perovskite optoelectronics. Nature Reviews Materials, 2020, 5, 423-439.	23.3	445
175	Machine-Learning-Accelerated Perovskite Crystallization. Matter, 2020, 2, 938-947.	5.0	91
176	Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367, 1135-1140.	6.0	525
177	Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nature Communications, 2020, 11, 1257.	5.8	180
178	Conventional Solvent Oxidizes Sn(II) in Perovskite Inks. ACS Energy Letters, 2020, 5, 1153-1155.	8.8	127
179	Regulating strain in perovskite thin films through charge-transport layers. Nature Communications, 2020, 11, 1514.	5.8	346
180	Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO ₂ Reduction at Commercially Viable Current Densities. ACS Catalysis, 2020, 10, 4854-4862.	5.5	331

#	Article	IF	CITATIONS
181	Solution-processed upconversion photodetectors based on quantum dots. Nature Electronics, 2020, 3, 251-258.	13.1	135
182	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology, 2020, 15, 668-674.	15.6	541
183	CO ₂ electrolysis to multicarbon products at activities greater than 1 A cm ^{â^2} . Science, 2020, 367, 661-666.	6.0	860
184	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	11.1	148
185	Multi-cation perovskites prevent carrier reflection from grain surfaces. Nature Materials, 2020, 19, 412-418.	13.3	100
186	Molecular enhancement of heterogeneous CO2 reduction. Nature Materials, 2020, 19, 266-276.	13.3	416
187	Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel Alloys via Tuning of Intermediate Adsorption. Journal of the American Chemical Society, 2020, 142, 5702-5708.	6.6	638
188	High Color Purity Leadâ€Free Perovskite Lightâ€Emitting Diodes via Sn Stabilization. Advanced Science, 2020, 7, 1903213.	5.6	146
189	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 793-798.	8.8	208
190	Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano, 2020, 14, 3426-3433.	7.3	66
191	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	13.7	682
192	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. ACS Energy Letters, 2020, 5, 642-649.	8.8	52
193	Electrochemical CO ₂ reduction on nanostructured metal electrodes: fact or defect?. Chemical Science, 2020, 11, 1738-1749.	3.7	83
194	Hydrationâ€Effectâ€Promoting Ni–Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. Advanced Materials, 2020, 32, e1906806.	11.1	62
195	Efficient Methane Electrosynthesis Enabled by Tuning Local CO ₂ Availability. Journal of the American Chemical Society, 2020, 142, 3525-3531.	6.6	154
196	Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. Nano Letters, 2020, 20, 1468-1474.	4.5	48
197	Regioselective magnetization in semiconducting nanorods. Nature Nanotechnology, 2020, 15, 192-197.	15.6	51
198	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	19.8	894

#	Article	IF	CITATIONS
199	Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nature Photonics, 2020, 14, 227-233.	15.6	136
200	Transition Dipole Moments of $n=1,2$, and 3 Perovskite Quantum Wells from the Optical Stark Effect and Many-Body Perturbation Theory. Journal of Physical Chemistry Letters, 2020, 11, 716-723.	2.1	24
201	Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density. Nano Letters, 2020, 20, 3694-3702.	4.5	46
202	Optimizing Solid-State Ligand Exchange for Colloidal Quantum Dot Optoelectronics: How Much Is Enough?. ACS Applied Energy Materials, 2020, 3, 5385-5392.	2.5	29
203	Directional Light Emission from Layered Metal Halide Perovskite Crystals. Journal of Physical Chemistry Letters, 2020, 11, 3458-3465.	2.1	23
204	Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catalysis, 2020, 3, 75-82.	16.1	390
205	How Local Reaction and Process Conditions Influence CO2 Reduction to Multicarbon Products on Copper Gas-Diffusion Electrodes. ECS Meeting Abstracts, 2020, MA2020-01, 1515-1515.	0.0	0
206	Potentialâ€Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie, 2019, 131, 14661-14665.	1.6	6
207	Energy Level Tuning at the MAPbl ₃ Perovskite/Contact Interface Using Chemical Treatment. ACS Energy Letters, 2019, 4, 2181-2184.	8.8	45
208	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. Journal of the American Chemical Society, 2019, 141, 13459-13467.	6.6	62
209	Potentialâ€Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie - International Edition, 2019, 58, 14519-14523.	7.2	40
210	Pathways to Industrial-Scale Fuel Out of Thin Air from CO2 Electrolysis. Joule, 2019, 3, 1822-1834.	11.7	137
211	Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells. ACS Nano, 2019, 13, 10662-10670.	7.3	71
212	Temperature-Induced Self-Compensating Defect Traps and Gain Thresholds in Colloidal Quantum Dots. ACS Nano, 2019, 13, 8970-8976.	7.3	8
213	Thermal unequilibrium of strained black CsPbI ₃ thin films. Science, 2019, 365, 679-684.	6.0	444
214	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. Joule, 2019, 3, 1703-1718.	11.7	106
215	Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2, 648-658.	16.1	838
216	Accelerated solution-phase exchanges minimize defects in colloidal quantum dot solids. Nano Energy, 2019, 63, 103876.	8.2	12

#	Article	IF	Citations
217	Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. Nature Communications, 2019, 10, 4807.	5.8	26
218	Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines. Advanced Materials, 2019, 31, e1903559.	11.1	128
219	Spectrally Tunable and Stable Electroluminescence Enabled by Rubidium Doping of CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2019, 7, 1901440.	3.6	51
220	Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransductive Differentiation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41030-41037.	4.0	10
221	Ultrahigh resolution and color gamut with scattering-reducing transmissive pixels. Nature Communications, 2019, 10, 4782.	5.8	29
222	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie, 2019, 131, 16223-16227.	1.6	16
223	51.3: Invited Paper: Perovskite Light Emitters via Dimensional and Structural Control. Digest of Technical Papers SID International Symposium, 2019, 50, 568-568.	0.1	0
224	Suppressing Interfacial Dipoles to Minimize Openâ€Circuit Voltage Loss in Quantum Dot Photovoltaics. Advanced Energy Materials, 2019, 9, 1901938.	10.2	14
225	Perovskite Solar Cells: Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines (Adv. Mater. 46/2019). Advanced Materials, 2019, 31, 1970330.	11.1	1
226	Halogen Vacancies Enable Ligandâ€Assisted Selfâ€Assembly of Perovskite Quantum Dots into Nanowires. Angewandte Chemie - International Edition, 2019, 58, 16077-16081.	7.2	49
227	Mixed Lead Halide Passivation of Quantum Dots. Advanced Materials, 2019, 31, e1904304.	11.1	81
228	Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly. Joule, 2019, 3, 2777-2791.	11.7	350
229	Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis. ACS Nano, 2019, 13, 11122-11128.	7.3	108
230	High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nature Biomedical Engineering, 2019, 3, 796-805.	11.6	53
231	Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors. ACS Nano, 2019, 13, 11988-11995.	7.3	99
232	CO ₂ reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy and Environmental Science, 2019, 12, 1442-1453.	15.6	692
233	Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nature Energy, 2019, 4, 197-205.	19.8	132
234	Learning-in-Templates Enables Accelerated Discovery and Synthesis of New Stable Double Perovskites. Journal of the American Chemical Society, 2019, 141, 3682-3690.	6.6	27

#	Article	IF	Citations
235	Enhanced Electrochemical Reduction of CO ₂ Catalyzed by Cobalt and Iron Amino Porphyrin Complexes. ACS Applied Energy Materials, 2019, 2, 1330-1335.	2.5	71
236	<i>Operando</i> EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 2597-2607.	5.2	125
237	CO ₂ Electroreduction from Carbonate Electrolyte. ACS Energy Letters, 2019, 4, 1427-1431.	8.8	141
238	Nanostructured Back Reflectors for Efficient Colloidal Quantumâ€Dot Infrared Optoelectronics. Advanced Materials, 2019, 31, e1901745.	11.1	49
239	Highly Passivated nâ€Type Colloidal Quantum Dots for Solutionâ€Processed Thermoelectric Generators with Large Output Voltage. Advanced Energy Materials, 2019, 9, 1901244.	10.2	12
240	Suppressed Ion Migration in Reduced-Dimensional Perovskites Improves Operating Stability. ACS Energy Letters, 2019, 4, 1521-1527.	8.8	130
241	Tuning Soluteâ€Redistribution Dynamics for Scalable Fabrication of Colloidal Quantumâ€Dot Optoelectronics. Advanced Materials, 2019, 31, e1805886.	11.1	28
242	Lattice anchoring stabilizes solution-processed semiconductors. Nature, 2019, 570, 96-101.	13.7	208
243	Binding Site Diversity Promotes CO ₂ Electroreduction to Ethanol. Journal of the American Chemical Society, 2019, 141, 8584-8591.	6.6	338
244	Electrochemical CO ₂ Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 2019, 31, e1807166.	11.1	769
245	Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks. ACS Energy Letters, 2019, 4, 1225-1230.	8.8	54
246	Anchored Ligands Facilitate Efficient B-Site Doping in Metal Halide Perovskites. Journal of the American Chemical Society, 2019, 141, 8296-8305.	6.6	53
247	Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. Journal of Physical Chemistry Letters, 2019, 10, 2629-2640.	2.1	162
248	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	23.0	640
249	What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science, 2019, 364, .	6.0	1,505
250	A Facetâ€Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 2019, 31, e1805580.	11.1	87
251	Contactless measurements of photocarrier transport properties in perovskite single crystals. Nature Communications, 2019, 10, 1591.	5.8	55
252	In Situ Backâ€Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1807435.	11.1	143

#	Article	IF	Citations
253	Introductory Guide to Assembling and Operating Gas Diffusion Electrodes for Electrochemical CO ₂ Reduction. ACS Energy Letters, 2019, 4, 639-643.	8.8	158
254	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catalysis, 2019, 2, 251-258.	16.1	188
255	Electroâ€Optic Modulation in Hybrid Metal Halide Perovskites. Advanced Materials, 2019, 31, e1808336.	11.1	42
256	Lowâ€Temperatureâ€Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics. Advanced Energy Materials, 2019, 9, 1803049.	10.2	19
257	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nature Communications, 2019, 10, 5814.	5.8	201
258	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	5.8	127
259	Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nature Energy, 2019, 4, 969-976.	19.8	120
260	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis, 2019, 2, 1124-1131.	16.1	214
261	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4, 864-873.	19.8	736
262	Modeling the electrical double layer to understand the reaction environment in a CO ₂ electrocatalytic system. Energy and Environmental Science, 2019, 12, 3380-3389.	15.6	125
263	Boosting the Single-Pass Conversion for Renewable Chemical Electrosynthesis. Joule, 2019, 3, 13-15.	11.7	51
264	Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 419-426.	2.1	74
265	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4, 107-114.	19.8	470
266	Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nature Photonics, 2018, 12, 159-164.	15.6	303
267	Hydronium-Induced Switching between CO ₂ Electroreduction Pathways. Journal of the American Chemical Society, 2018, 140, 3833-3837.	6.6	144
268	Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 2018, 9, 1607.	5.8	309
269	2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology, 2018, 13, 456-462.	15.6	252
270	Chemicalâ€ŧoâ€Electricity Carbon: Water Device. Advanced Materials, 2018, 30, e1707635.	11,1	45

#	Article	IF	Citations
271	Combinatorial Probes for Highâ€Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples. Angewandte Chemie, 2018, 130, 3773-3778.	1.6	14
272	Imaging Heterogeneously Distributed Photoâ€Active Traps in Perovskite Single Crystals. Advanced Materials, 2018, 30, e1705494.	11.1	28
273	Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics. Journal of the American Chemical Society, 2018, 140, 2890-2896.	6.6	288
274	Profiling circulating tumour cells and other biomarkers of invasive cancers. Nature Biomedical Engineering, 2018, 2, 72-84.	11.6	187
275	Combinatorial Probes for Highâ€Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples. Angewandte Chemie - International Edition, 2018, 57, 3711-3716.	7.2	59
276	Electro-optic Response in Germanium Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 1018-1027.	2.1	39
277	Amideâ€Catalyzed Phaseâ€Selective Crystallization Reduces Defect Density in Wideâ€Bandgap Perovskites. Advanced Materials, 2018, 30, e1706275.	11.1	80
278	Excitonic Creation of Highly Luminescent Defects In Situ in Working Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1700856.	3.6	6
279	Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis, 2018, 1, 103-110.	16.1	737
280	Solutionâ€Processed In ₂ O ₃ /ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantumâ€Dot Solar Cells. Solar Rrl, 2018, 2, 1800076.	3.1	34
281	What Should We Make with CO2 and How Can We Make It?. Joule, 2018, 2, 825-832.	11.7	975
282	Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Letters, 2018, 18, 3157-3164.	4.5	199
283	Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nature Chemistry, 2018, 10, 489-495.	6.6	68
284	The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance. Advanced Materials, 2018, 30, 1700764.	11.1	141
285	Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nature Chemistry, 2018, 10, 149-154.	6.6	476
286	Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip. Bioresource Technology, 2018, 250, 481-485.	4.8	42
287	Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation. Nature Communications, 2018, 9, 4947.	5.8	22
288	Infrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes. ACS Energy Letters, 2018, 3, 2908-2913.	8.8	20

#	Article	IF	CITATIONS
289	Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541-545.	13.7	1,451
290	Precise Control of Thermal and Redox Properties of Organic Hole†Transport Materials. Angewandte Chemie - International Edition, 2018, 57, 15529-15533.	7.2	41
291	Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nature Communications, 2018, 9, 4003.	5.8	56
292	Single-Cell Tumbling Enables High-Resolution Size Profiling of Retinal Stem Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34811-34816.	4.0	10
293	Butylamineâ€Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells. Advanced Materials, 2018, 30, e1803830.	11.1	67
294	A Surface Reconstruction Route to High Productivity and Selectivity in CO ₂ Electroreduction toward C ₂₊ Hydrocarbons. Advanced Materials, 2018, 30, e1804867.	11.1	200
295	Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245-248.	13.7	2,589
296	Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. Nano Letters, 2018, 18, 7052-7059.	4.5	51
297	Copper adparticle enabled selective electrosynthesis of n-propanol. Nature Communications, 2018, 9, 4614.	5.8	153
298	High Rate, Selective, and Stable Electroreduction of CO ₂ to CO in Basic and Neutral Media. ACS Energy Letters, 2018, 3, 2835-2840.	8.8	230
299	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catalysis, 2018, 1, 946-951.	16.1	354
300	Programmable Metal/Semiconductor Nanostructures for mRNA-Modulated Molecular Delivery. Nano Letters, 2018, 18, 6222-6228.	4.5	36
301	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nature Communications, 2018, 9, 3828.	5.8	279
302	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
303	Examining Structure–Property–Function Relationships in Thiophene, Selenophene, and Tellurophene Homopolymers. ACS Applied Energy Materials, 2018, 1, 5033-5042.	2.5	24
304	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907.	13.3	351
305	Perovskites for Light Emission. Advanced Materials, 2018, 30, e1801996.	11.1	417
306	Solar Cells: Overcoming the Ambient Manufacturabilityâ€Scalabilityâ€Performance Bottleneck in Colloidal Quantum Dot Photovoltaics (Adv. Mater. 35/2018). Advanced Materials, 2018, 30, 1870260.	11.1	3

#	Article	IF	Citations
307	Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nature Communications, 2018, 9, 3541.	5.8	536
308	Activated Electronâ€Transport Layers for Infrared Quantum Dot Optoelectronics. Advanced Materials, 2018, 30, e1801720.	11.1	57
309	CO ₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360, 783-787.	6.0	1,638
310	Electron–phonon interaction in efficient perovskite blue emitters. Nature Materials, 2018, 17, 550-556.	13.3	472
311	Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 2018, 3, 1492-1498.	8.8	70
312	Overcoming the Ambient Manufacturabilityâ€Scalabilityâ€Performance Bottleneck in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2018, 30, e1801661.	11.1	79
313	Curvature-Mediated Surface Accessibility Enables Ultrasensitive Electrochemical Human Methyltransferase Analysis. ACS Sensors, 2018, 3, 1765-1772.	4.0	14
314	Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nature Communications, 2018, 9, 3100.	5.8	237
315	Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nature Chemistry, 2018, 10, 974-980.	6.6	781
316	Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy, 2018, 3, 648-654.	19.8	552
317	Perovskite nanowires find an edge. Nature Electronics, 2018, 1, 380-381.	13.1	5
318	Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018, 12, 528-533.	15.6	371
319	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	6.6	326
320	2D Metal Oxyhalideâ€Derived Catalysts for Efficient CO ₂ Electroreduction. Advanced Materials, 2018, 30, e1802858.	11,1	200
321	Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31225-31232.	4.0	57
322	Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nature Catalysis, 2018, 1, 421-428.	16.1	537
323	Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. Nano Letters, 2018, 18, 4417-4423.	4.5	57
324	Combined high alkalinity and pressurization enable efficient CO ₂ electroreduction to CO. Energy and Environmental Science, 2018, 11, 2531-2539.	15.6	214

#	Article	IF	Citations
325	Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2017, 2, .	23.3	992
326	Compound Homojunction:Heterojunction Reduces Bulk and Interface Recombination in ZnO Photoanodes for Water Splitting. Small, 2017, 13, 1603527.	5.2	29
327	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
328	Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5556-5565.	4.0	25
329	Band-aligned C ₃ N _{4â^'x} S _{3x/2} stabilizes CdS/CuInGaS ₂ photocathodes for efficient water reduction. Journal of Materials Chemistry A, 2017, 5, 3167-3171.	5.2	9
330	Light dilution via wavelength management for efficient highâ€density photobioreactors. Biotechnology and Bioengineering, 2017, 114, 1160-1169.	1.7	30
331	Photovoltage field-effect transistors. Nature, 2017, 542, 324-327.	13.7	204
332	OD–2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation. Advanced Materials, 2017, 29, 1605646.	11.1	89
333	Steric Hindrance Assay for Secreted Factors in Stem Cell Culture. ACS Sensors, 2017, 2, 495-500.	4.0	14
334	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 6693-6699.	6.6	723
335	Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. Journal of Materials Chemistry A, 2017, 5, 11582-11585.	5.2	58
336	Enhanced Solarâ€toâ€Hydrogen Generation with Broadband Epsilonâ€Nearâ€Zero Nanostructured Photocatalysts. Advanced Materials, 2017, 29, 1701165.	11.1	39
337	Pseudohalideâ€Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics. Advanced Materials, 2017, 29, 1700749.	11.1	79
338	Freestanding nano-photoelectrode as a highly efficient and visible-light-driven photocatalyst for water-splitting. Journal of Materials Chemistry A, 2017, 5, 10651-10657.	5.2	15
339	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters, 2017, 17, 3701-3709.	4.5	409
340	Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Twoâ€Dimensional Sorting Device. Angewandte Chemie, 2017, 129, 169-174.	1.6	8
341	Graphene Oxide Shells on Plasmonic Nanostructures Lead to High-Performance Photovoltaics: A Model Study Based on Dye-Sensitized Solar Cells. ACS Energy Letters, 2017, 2, 117-123.	8.8	17
342	Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Twoâ€Dimensional Sorting Device. Angewandte Chemie - International Edition, 2017, 56, 163-168.	7.2	85

#	Article	IF	CITATIONS
343	Ultrafast Carrier Trapping in Thick-Shell Colloidal Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 3179-3184.	2.1	16
344	Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8, 15640.	5.8	669
345	Engineering charge transport by heterostructuring solution-processed semiconductors. Nature Reviews Materials, 2017, 2, .	23.3	105
346	Quantum Dot Color-Converting Solids Operating Efficiently in the kW/cm ² Regime. Chemistry of Materials, 2017, 29, 5104-5112.	3.2	17
347	Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Applied Physics Letters, 2017, 110, 223903.	1.5	23
348	Nanomorphology-Enhanced Gas-Evolution Intensifies CO ₂ Reduction Electrochemistry. ACS Sustainable Chemistry and Engineering, 2017, 5, 4031-4040.	3.2	135
349	Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix. Advanced Materials, 2017, 29, 1605945.	11.1	309
350	Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells. Nano Letters, 2017, 17, 2349-2353.	4.5	46
351	Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission. ACS Photonics, 2017, 4, 830-836.	3.2	30
352	High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications. Journal of Physical Chemistry C, 2017, 121, 7183-7187.	1.5	128
353	Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature, 2017, 544, 75-79.	13.7	319
354	Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nature Materials, 2017, 16, 35-44.	13.3	243
355	Origins of Stokes Shift in PbS Nanocrystals. Nano Letters, 2017, 17, 7191-7195.	4.5	72
356	A penalty on photosynthetic growth in fluctuating light. Scientific Reports, 2017, 7, 12513.	1.6	50
357	Enhanced Openâ€Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivityâ€Controlled Solutionâ€Phase Ligand Exchange. Advanced Materials, 2017, 29, 1703627.	11.1	49
358	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule, 2017, 1, 794-805.	11.7	390
359	Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37536-37541.	4.0	35
360	Cellulose Nanocrystal:Polymer Hybrid Optical Diffusers for Indexâ€Matchingâ€Free Light Management in Optoelectronic Devices. Advanced Optical Materials, 2017, 5, 1700430.	3.6	43

#	Article	IF	CITATIONS
361	Biofunctionalized conductive polymers enable efficient CO ₂ electroreduction. Science Advances, 2017, 3, e1700686.	4.7	89
362	Effect of disorder on transport properties in a tight-binding model for lead halide perovskites. Scientific Reports, 2017, 7, 8902.	1.6	25
363	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 21002-21015.	5 . 2	10
364	Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2017, 29, 1702350.	11.1	126
365	Flexible Filterâ€Free Narrowband Photodetector with High Gain and Customized Responsive Spectrum. Advanced Functional Materials, 2017, 27, 1702360.	7.8	57
366	Chemically Addressable Perovskite Nanocrystals for Lightâ€Emitting Applications. Advanced Materials, 2017, 29, 1701153.	11.1	139
367	Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO ₂ reduction to C ₂ H ₄ . Green Chemistry, 2017, 19, 4023-4030.	4.6	58
368	Biexciton Resonances Reveal Exciton Localization in Stacked Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 3895-3901.	2.1	41
369	Colloidal quantum dot solar cell power conversion efficiency optimization using analysis of currentâ€voltage characteristics and electrode contact imaging by lockâ€n carrierography. Progress in Photovoltaics: Research and Applications, 2017, 25, 1034-1050.	4.4	14
370	Small-Band-Offset Perovskite Shells Increase Auger Lifetime in Quantum Dot Solids. ACS Nano, 2017, 11, 12378-12384.	7.3	23
371	Mixed-quantum-dot solar cells. Nature Communications, 2017, 8, 1325.	5.8	148
372	Amplified Micromagnetic Field Gradients Enable High-Resolution Profiling of Rare Cell Subpopulations. ACS Applied Materials & Subpopulations. ACS Applied Materials & Subpopulations. ACS Applied Materials & Subpopulations.	4.0	12
373	Mobile-Ion-Induced Degradation of Organic Hole-Selective Layers in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 14517-14523.	1.5	117
374	Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO ₂ . Journal of the American Chemical Society, 2017, 139, 9359-9363.	6.6	260
375	Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry. International Journal of Thermophysics, 2017, 38, 1.	1.0	7
376	Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dotÂsolids. Nature Materials, 2017, 16, 258-263.	13.3	563
377	Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nature Nanotechnology, 2017, 12, 274-281.	15.6	198
378	Colloidal Quantum Dot Solar Cell Electrical Parameter Imaging Using Camera-based High-frequency Heterodyne Lock-in Carrierography. , 2017, , .		0

#	Article	IF	CITATIONS
379	Multifunctional quantum dot DNA hydrogels. Nature Communications, 2017, 8, 381.	5.8	104
380	Renewables need a grand-challenge strategy. Nature, 2016, 538, 30-30.	13.7	27
381	Fast and Sensitive Solutionâ€Processed Visibleâ€Blind Perovskite UV Photodetectors. Advanced Materials, 2016, 28, 7264-7268.	11.1	234
382	Graphdiyne: An Efficient Hole Transporter for Stable Highâ€Performance Colloidal Quantum Dot Solar Cells. Advanced Functional Materials, 2016, 26, 5284-5289.	7.8	172
383	Imageâ€Reversal Soft Lithography: Fabrication of Ultrasensitive Biomolecular Detectors. Advanced Healthcare Materials, 2016, 5, 893-899.	3.9	6
384	The Inâ€Gap Electronic State Spectrum of Methylammonium Lead Iodide Singleâ€Crystal Perovskites. Advanced Materials, 2016, 28, 3406-3410.	11.1	187
385	Design of Phosphor White Light Systems for High-Power Applications. ACS Photonics, 2016, 3, 2243-2248.	3.2	37
386	Perovskite photonic sources. Nature Photonics, 2016, 10, 295-302.	15.6	1,369
387	Large-Scale Synthesis of Metal Nanocrystals in Aqueous Suspensions. Chemistry of Materials, 2016, 28, 3196-3202.	3.2	37
388	Gradient-Doped Colloidal Quantum Dot Solids Enable Thermophotovoltaic Harvesting of Waste Heat. ACS Energy Letters, 2016, 1, 740-746.	8.8	8
389	Lattice dynamics and the nature of structural transitions in organolead halide perovskites. Physical Review B, 2016, 94, .	1.1	46
390	Atomistic Design of CdSe/CdS Core–Shell Quantum Dots with Suppressed Auger Recombination. Nano Letters, 2016, 16, 6491-6496.	4.5	51
391	Optical Resonance Engineering for Infrared Colloidal Quantum Dot Photovoltaics. ACS Energy Letters, 2016, 1, 852-857.	8.8	27
392	Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics. ACS Energy Letters, 2016, 1, 922-930.	8.8	40
393	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	13.7	1,429
394	Engineering of CH ₃ NH ₃ Pbl ₃ Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie, 2016, 128, 10844-10848.	1.6	18
395	Engineering of CH ₃ NH ₃ Pbl ₃ Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie - International Edition, 2016, 55, 10686-10690.	7.2	152
396	Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement. ACS Nano, 2016, 10, 8603-8609.	7.3	190

#	Article	IF	CITATIONS
397	Building devices from colloidal quantum dots. Science, 2016, 353, .	6.0	996
398	Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725.	11.1	917
399	Mechanistic Control of the Growth of Three-Dimensional Gold Sensors. Journal of Physical Chemistry C, 2016, 120, 21123-21132.	1.5	46
400	Pure Cubicâ€Phase Hybrid Iodobismuthates AgBi ₂ I ₇ for Thinâ€Film Photovoltaics. Angewandte Chemie - International Edition, 2016, 55, 9586-9590.	7.2	201
401	High-Density Nanosharp Microstructures Enable Efficient CO ₂ Electroreduction. Nano Letters, 2016, 16, 7224-7228.	4.5	158
402	Photon management for augmented photosynthesis. Nature Communications, 2016, 7, 12699.	5.8	200
403	Colloidal quantum dot solids for solution-processed solar cells. Nature Energy, 2016, 1, .	19.8	255
404	Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catalysis, 2016, 6, 8115-8120.	5.5	277
405	Amineâ€Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8757-8763.	7.8	344
406	Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles. Small, 2016, 12, 727-732.	5.2	144
407	Crosslinked Remoteâ€Doped Holeâ€Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells. Advanced Materials, 2016, 28, 2807-2815.	11.1	108
408	Increasing Polymer Solar Cell Fill Factor by Trapâ€Filling with F4â€TCNQ at Parts Per Thousand Concentration. Advanced Materials, 2016, 28, 6491-6496.	11.1	85
409	Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11, 872-877.	15.6	1,868
410	Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots. Nature Materials, 2016, 15, 987-994.	13.3	101
411	ZnFe ₂ O ₄ Leaves Grown on TiO ₂ Trees Enhance Photoelectrochemical Water Splitting. Small, 2016, 12, 3181-3188.	5.2	56
412	Quantitative Analysis of Trap-State-Mediated Exciton Transport in Perovskite-Shelled PbS Quantum Dot Thin Films Using Photocarrier Diffusion-Wave Nondestructive Evaluation and Imaging. Journal of Physical Chemistry C, 2016, 120, 14416-14427.	1.5	26
413	10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Letters, 2016, 16, 4630-4634.	4.5	312
414	Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance. Advanced Materials, 2016, 28, 299-304.	11.1	312

#	Article	IF	CITATIONS
415	Doubleâ€Sided Junctions Enable Highâ€Performance Colloidalâ€Quantumâ€Dot Photovoltaics. Advanced Materials, 2016, 28, 4142-4148.	11.1	121
416	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	6.0	1,948
417	Highly efficient quantum dot near-infrared light-emitting diodes. Nature Photonics, 2016, 10, 253-257.	15.6	361
418	Ligand-Stabilized Reduced-Dimensionality Perovskites. Journal of the American Chemical Society, 2016, 138, 2649-2655.	6.6	1,157
419	Colloidal quantum dot ligand engineering for high performance solar cells. Energy and Environmental Science, 2016, 9, 1130-1143.	15.6	297
420	Self-assembled nanoparticle-stabilized photocatalytic reactors. Nanoscale, 2016, 8, 2107-2115.	2.8	22
421	Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. Journal of Physical Chemistry Letters, 2016, 7, 295-301.	2.1	332
422	The Silicon:Colloidal Quantum Dot Heterojunction. Advanced Materials, 2015, 27, 7445-7450.	11.1	55
423	Sample-to-Answer Isolation and mRNA Profiling of Circulating Tumor Cells. Analytical Chemistry, 2015, 87, 6258-6264.	3.2	35
424	Colloidal CdSe _{1–<i>x</i>} S _{<i>x</i>} Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence. Nano Letters, 2015, 15, 4611-4615.	4.5	114
425	Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9, 409-415.	15.6	781
426	Ultrasensitive visual read-out of nucleic acids using electrocatalytic fluid displacement. Nature Communications, 2015, 6, 6978.	5.8	25
427	Halide-Dependent Electronic Structure of Organolead Perovskite Materials. Chemistry of Materials, 2015, 27, 4405-4412.	3.2	305
428	An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nature Chemistry, 2015, 7, 569-575.	6.6	234
429	Self-Assembled PbSe Nanowire:Perovskite Hybrids. Journal of the American Chemical Society, 2015, 137, 14869-14872.	6.6	11
430	Planar-integrated single-crystalline perovskite photodetectors. Nature Communications, 2015, 6, 8724.	5.8	617
431	Fractal circuit sensors enable rapid quantification of biomarkers for donor lung assessment for transplantation. Science Advances, 2015, 1, e1500417.	4.7	29
432	Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519-522.	6.0	4,156

#	Article	IF	Citations
433	Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano, 2015, 9, 9340-9346.	7.3	254
434	Programmable definition of nanogap electronic devices using self-inhibited reagent depletion. Nature Communications, 2015, 6, 6940.	5.8	18
435	Colloidal Quantum Dot Solar Cells. Chemical Reviews, 2015, 115, 12732-12763.	23.0	987
436	Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nature Communications, 2015, 6, 7772.	5.8	68
437	Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. Journal of Materials Chemistry C, 2015, 3, 8839-8843.	2.7	161
438	Quantum-dot-in-perovskite solids. Nature, 2015, 523, 324-328.	13.7	468
439	Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering. ACS Photonics, 2015, 2, 1117-1123.	3.2	292
440	Synergistic photocurrent addition in hybrid quantum dot: Bulk heterojunction solar cells. Nano Energy, 2015, 13, 491-499.	8.2	18
441	Conformal Fabrication of Colloidal Quantum Dot Solids for Optically Enhanced Photovoltaics. ACS Nano, 2015, 9, 5447-5453.	7. 3	29
442	Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dotâ€Toâ€Dot Surface Passivation. Advanced Materials, 2015, 27, 3325-3330.	11.1	118
443	In Situ Electrochemical ELISA for Specific Identification of Captured Cancer Cells. ACS Applied Materials & Camp; Interfaces, 2015, 7, 14165-14169.	4.0	58
444	Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nature Communications, 2015, 6, 7081.	5.8	948
445	Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Applied Materials & Diterfaces, 2015, 7, 25007-25013.	4.0	481
446	Microsecond-sustained lasing from colloidal quantum dot solids. Nature Communications, 2015, 6, 8694.	5.8	109
447	High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Letters, 2015, 15, 7691-7696.	4.5	198
448	Cleavable Ligands Enable Uniform Close Packing in Colloidal Quantum Dot Solids. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21995-22000.	4.0	9
449	Infrared Colloidal Quantum Dot Photovoltaics <i>via</i> Coupling Enhancement and Agglomeration Suppression. ACS Nano, 2015, 9, 8833-8842.	7.3	96
450	Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling. Nano Letters, 2015, 15, 7539-7543.	4.5	173

#	Article	IF	CITATIONS
451	Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells. Nano Energy, 2015, 17, 196-205.	8.2	43
452	All-Quantum-Dot Infrared Light-Emitting Diodes. ACS Nano, 2015, 9, 12327-12333.	7.3	61
453	AMR thermodynamics: Semi-analytic modeling. Cryogenics, 2014, 62, 177-184.	0.9	26
454	Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13, 233-240.	13.3	273
455	Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots. Physical Review Letters, 2014, 112, 157401.	2.9	73
456	Boosting plant biology. Nature Materials, 2014, 13, 329-331.	13.3	19
457	Photovoltaics: The Complete Inâ€Gap Electronic Structure of Colloidal Quantum Dot Solids and Its Correlation with Electronic Transport and Photovoltaic Performance (Adv. Mater. 6/2014). Advanced Materials, 2014, 26, 822-822.	11.1	1
458	Materials Processing Routes to Trap-Free Halide Perovskites. Nano Letters, 2014, 14, 6281-6286.	4.5	671
459	Nanostructured CMOS Wireless Ultra-Wideband Label-Free PCR-Free DNA Analysis SoC. IEEE Journal of Solid-State Circuits, 2014, 49, 1223-1241.	3.5	46
460	Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5, 3803.	5.8	214
461	Air-stable n-type colloidal quantum dot solids. Nature Materials, 2014, 13, 822-828.	13.3	529
462	Performance modeling of AMR refrigerators. International Journal of Refrigeration, 2014, 37, 51-62.	1.8	21
463	Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink. Advanced Materials, 2013, 25, 5742-5749.	11.1	99
464	Dynamic Trap Formation and Elimination in Colloidal Quantum Dots. Journal of Physical Chemistry Letters, 2013, 4, 987-992.	2.1	115
465	Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells (Adv.) Tj ETQq1 1 0.7	84314 rgE	BT_{Overlock
466	Simplified modeling of active magnetic regenerators. International Journal of Refrigeration, 2013, 36, 932-940.	1.8	26
467	Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids. ACS Nano, 2013, 7, 5282-5290.	7.3	178
468	Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement. MRS Communications, 2013, 3, 83-90.	0.8	32

#	Article	IF	Citations
469	Interface Recombination in Depleted Heterojunction Photovoltaics based on Colloidal Quantum Dots. Advanced Energy Materials, 2013, 3, 917-922.	10.2	117
470	Electric field engineering using quantum-size-effect-tuned heterojunctions. Applied Physics Letters, 2013, 103, .	1.5	12
471	Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Applied Physics Letters, 2013, 103, .	1.5	19
472	Systematic optimization of quantum junction colloidal quantum dot solar cells. Applied Physics Letters, 2012, 101, 151112.	1.5	52
473	Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7, 577-582.	15.6	1,100
474	Colloidal quantum dot solar cells. Nature Photonics, 2012, 6, 133-135.	15.6	571
475	Solution-processed colloidal quantum dot photovoltaics: A perspective. Energy and Environmental Science, 2011, 4, 4870.	15.6	82
476	Size dependence of carrier dynamics and carrier multiplication in PbS quantum dots. Physical Review B, 2011, 83, .	1.1	52
477	Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials, 2011, 10, 765-771.	13.3	1,375
478	Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics, 2011, 5, 480-484.	15.6	367
479	Solution-processed PbS quantum dot infrared photodetectors and photovoltaics., 2010, , 70-74.		4
480	Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy, 2010, 35, 1884-1897.	4.5	150
481	Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts. Applied Physics Letters, 2010, 97, 023109.	1.5	39
482	Solution-Processed Light Sensors and Photovoltaics. IEEE Photonics Journal, 2010, 2, 265-268.	1.0	3
483	Integrated nanostructures for direct detection of DNA at attomolar concentrations. Applied Physics Letters, 2009, 95, .	1.5	18
484	Solution-Processed Quantum Dot Photodetectors. Proceedings of the IEEE, 2009, 97, 1666-1683.	16.4	127
485	Infrared photovoltaics made by solution processing. Nature Photonics, 2009, 3, 325-331.	15.6	326
486	Solution Processed Photovoltaic Devices with 2% Infrared Monochromatic Power Conversion Efficiency: Performance Optimization and Oxide Formation. Advanced Materials, 2008, 20, 3433-3439.	11.1	64

#	Article	IF	CITATIONS
487	Smoothâ€Morphology Ultrasensitive Solutionâ€Processed Photodetectors. Advanced Materials, 2008, 20, 4398-4402.	11.1	49
488	Solution-Processed Infrared Optoelectronics: Photovoltaics, Sensors, and Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1223-1229.	1.9	26
489	Biotemplated nanostructures: directed assembly of electronic and optical materials using nanoscale complementarity. Journal of Materials Chemistry, 2008, 18, 954-964.	6.7	72
490	Ultrafast carrier dynamics in PbS quantum dots. , 2008, , .		0
491	Parallel detection of nucleic acids using an electronic chip. , 2008, , .		0
492	Sensitive solution-processed visible-wavelength photodetectors. Nature Photonics, 2007, 1, 531-534.	15.6	411
493	Heterogeneous deposition of noble metals on semiconductor nanoparticles in organic or aqueous solvents. Journal of Materials Chemistry, 2006, 16, 4025.	6.7	65
494	Coupling the computational with the sensational: Merging quantum dots, biomolecules, and polymers for record performance from solution-processed optoelectronics. , 2006, , .		0
495	Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005, 4, 138-142.	13.3	1,793
496	Infrared Quantum Dots. Advanced Materials, 2005, 17, 515-522.	11.1	510
497	PbS quantum dot electroabsorption modulation across the extended communications band 1200–1700nm. Applied Physics Letters, 2005, 87, 053101.	1.5	55
498	Colloidal Crystallization Accomplished by Electrodeposition on Patterned Substrates. Journal of Dispersion Science and Technology, 2005, 26, 259-265.	1.3	10
499	Measurement of the phase shift upon reflection from photonic crystals. Applied Physics Letters, 2005, 86, 151112.	1.5	29
500	Impact of polydispersity on light propagation in colloidal photonic crystals. Applied Physics Letters, 2004, 85, 5887-5889.	1.5	37
501	Luminescence from processible quantum dot-polymer light emitters 1100–1600 nm: Tailoring spectral width and shape. Applied Physics Letters, 2004, 84, 3459-3461.	1.5	49
502	Size-tunable infrared (1000–1600 nm) electroluminescence from solution-processible PbS quantum dot nanocrystals: Towards monolithic optoelectronic integration on silicon. Journal of Modern Optics, 2004, 51, 2797-2803.	0.6	3
503	Third-order optical nonlinearity and figure of merit of CdS nanocrystals chemically stabilized in spin-processable polymeric films. Journal of Materials Science, 2004, 39, 993-996.	1.7	25
504	Efficient excitation transfer from polymer to nanocrystals. Applied Physics Letters, 2004, 84, 4295-4297.	1.5	88

#	Article	IF	Citations
505	Cross-linked C60 Polymer Breaches the Quantum Gap. Nano Letters, 2004, 4, 1673-1675.	4.5	36
506	Photoconductivity from PbS-nanocrystalâ^•semiconducting polymer composites for solution-processible, quantum-size tunableinfrared photodetectors. Applied Physics Letters, 2004, 85, 2089-2091.	1.5	145
507	Photooxidation and Photoconductivity of Polyferrocenylsilane Thin Films. Macromolecular Chemistry and Physics, 2003, 204, 915-921.	1.1	38
508	Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Applied Physics Letters, 2003, 82, 2895-2897.	1.5	356
509	Quantum dots in a metallopolymer host: studies of composites of polyferrocenes and CdSe nanocrystals. Journal of Materials Chemistry, 2003, 13, 2213.	6.7	27
510	Experimental Studies and Physical Model of Efficient, Tunable Injection Using Tunnel-Transparent Dielectric Contacts on Polymer Light-Emitting Devices. Materials Research Society Symposia Proceedings, 2002, 734, 721.	0.1	1
511	GaSb-based Nanocomposites as IR-Emitters. Materials Research Society Symposia Proceedings, 2002, 737, 116.	0.1	O
512	Luminescent properties and electronic structure of conjugated polymer-dielectric nanocrystal composites. Journal of Applied Physics, 2002, 91, 6679.	1.1	30
513	The photonic analogue of the graded heterostructure: Analysis using the envelope approximation. Optical and Quantum Electronics, 2002, 34, 217-226.	1.5	7
514	Characterization of internal order of colloidal crystals by optical diffraction. Optical and Quantum Electronics, 2002, 34, 27-36.	1.5	23
515	Multi-layer contacts for organic light-emitting diodes with enhanced injection efficiency. Materials Research Society Symposia Proceedings, 2001, 708, 3291.	0.1	1
516	Title is missing!. Journal of Materials Science: Materials in Electronics, 2001, 12, 21-25.	1.1	26
517	Azobenzenes for photonic network applications: Third-order nonlinear optical properties. Journal of Materials Science: Materials in Electronics, 2001, 12, 483-489.	1.1	85
518	The multiple ways of making perovskite/silicon tandem solar cells: Which way to go?. , 0, , .		0
519	Selfâ€Aligned Nonâ€Centrosymmetric Conjugated Molecules Enable Electroâ€Optic Perovskites. Advanced Optical Materials, 0, , 2100730.	3.6	6
520	Vaporâ€Phase Deposition of Highly Luminescent Embedded Perovskite Nanocrystals. Advanced Optical Materials, 0, , 2102809.	3.6	1