List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1464935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and mechanical properties of Al ₂ O ₃ ceramic joints achieved by Agâ€SiO ₂ braze in air. International Journal of Applied Ceramic Technology, 2022, 19, 508-513.	2.1	2
2	Stable lithium metal anode achieved by shortening diffusion path on solid electrolyte interface derived from Cu2O lithiophilic layer. Chemical Engineering Journal, 2022, 433, 133689.	12.7	10
3	Facile Synthesis of FeOOHâ^'Ni ₃ S ₂ Nanosheet Arrays on Nickel Foam via Chemical Immersion toward Electrocatalytic Water Splitting. ChemistrySelect, 2022, 7, .	1.5	4
4	Corrosion behavior of stainless steel-tungsten carbide joints brazed with AgCuX (XÂ=ÂIn, Ti) alloys. Corrosion Science, 2022, 200, 110231.	6.6	80
5	Atomicâ€Level Platinum Filling into Niâ€Vacancies of Dualâ€Deficient NiO for Boosting Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	19.5	110
6	Periodic Corrosion Turns Bulk Ni into Zr-Incorporated Polycrystalline Ni(OH) ₂ Nanoarrays for Overall Water Decomposition. ACS Applied Energy Materials, 2022, 5, 5711-5718.	5.1	7
7	Surface activation towards manganese dioxide nanosheet arrays via plasma engineering as cathode and anode for efficient water splitting. Journal of Colloid and Interface Science, 2021, 586, 95-102.	9.4	15
8	Antimony nanocrystals self-encapsulated within bio-oil derived carbon for ultra-stable sodium storage. Journal of Colloid and Interface Science, 2021, 582, 459-466.	9.4	11
9	Nanoarchitectured Design of Vertical‣tanding Arrays for Supercapacitors: Progress, Challenges, and Perspectives. Advanced Functional Materials, 2021, 31, 2006030.	14.9	150
10	Bioinspired Metal-Intermetallic Laminated Composites for the Fabrication of Superhydrophobic Surfaces with Responsive Wettability. ACS Applied Materials & Interfaces, 2021, 13, 5834-5843.	8.0	10
11	Lattice Mismatch in Ni ₃ Se ₄ –MoSe ₂ Nanoheterostructures with an Abundant Interface for Catalytic Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 3493-3499.	5.0	18
12	Self-Assembly Lightweight Honeycomb-Like Prussian Blue Analogue on Cu Foam for Lithium Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 23803-23810.	8.0	19
13	Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content. Journal of Materials Science and Technology, 2021, 83, 123-130.	10.7	16
14	All-in-One Sulfur Host: Smart Controls of Architecture and Composition for Accelerated Liquid–Solid Redox Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39424-39434.	8.0	22
15	Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway. Nature Communications, 2021, 12, 5516.	12.8	36
16	A fast micro–nano liquid layer induced construction of scaled-up oxyhydroxide based electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2021, 9, 26777-26787.	10.3	27
17	Joining 3YSZ Electrolyte to AISI 441 Interconnect Using the Ag Particle Interlayer: Enhanced Mechanical and Aging Properties. Crystals, 2021, 11, 1573.	2.2	3
18	In situ synthesis of core-shell vanadium nitride@N-doped carbon microsheet sponges as high-performance anode materials for solid-state supercapacitors. Journal of Colloid and Interface Science, 2020, 560, 122-129.	9.4	34

#	Article	IF	CITATIONS
19	Constructing MoS ₂ /CoMo ₂ S ₄ /Co ₃ S ₄ nanostructures supported by graphene layers as the anode for lithium-ion batteries. Dalton Transactions, 2020, 49, 1167-1172.	3.3	17
20	Sea urchin-like CuCo ₂ S ₄ microspheres with a controllable interior structure as advanced electrode materials for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 603-609.	6.0	20
21	Rich P vacancies modulate Ni2P/Cu3P interfaced nanosheets for electrocatalytic alkaline water splitting. Journal of Colloid and Interface Science, 2020, 564, 37-42.	9.4	43
22	W doping dominated NiO/NiS2 interfaced nanosheets for highly efficient overall water splitting. Journal of Colloid and Interface Science, 2020, 562, 363-369.	9.4	47
23	The effects of indium addition on mechanical properties and shape memory behavior of Ti-Ta-Zr high temperature alloys. Materials Chemistry and Physics, 2020, 249, 123189.	4.0	2
24	Direct Observation of Li Migration into V ₅ S ₈ : Order to Antisite Disorder Intercalation Followed by the Topotactic-Based Conversion Reaction. ACS Applied Materials & Interfaces, 2020, 12, 36320-36328.	8.0	9
25	Constructing NiS–VS heterostructured nanosheets for efficient overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 4924-4929.	6.0	7
26	General Decomposition Pathway of Organic–Inorganic Hybrid Perovskites through an Intermediate Superstructure and its Suppression Mechanism. Advanced Materials, 2020, 32, e2001107.	21.0	42
27	Rationally designed C/Co ₉ S ₈ @SnS ₂ nanocomposite as a highly efficient anode for lithium-ion batteries. Nanotechnology, 2020, 31, 395401.	2.6	7
28	Joining Alumina and Sapphire by Growing Aluminium Borate Whiskers In-Situ, and the Whiskers' Orientation Relationship with the Sapphire Substrate. Materials, 2020, 13, 175.	2.9	2
29	Fe doped Ni ₅ P ₄ nanosheet arrays with rich P vacancies <i>via</i> phase transformation for efficient overall water splitting. Nanoscale, 2020, 12, 6204-6210.	5.6	47
30	Plasma-induced surface reorganization of porous Co3O4-CoO heterostructured nanosheets for electrocatalytic water oxidation. Journal of Colloid and Interface Science, 2020, 565, 400-404.	9.4	10
31	Engineering Se vacancies to promote the intrinsic activities of P doped NiSe2 nanosheets for overall water splitting. Journal of Colloid and Interface Science, 2020, 571, 260-266.	9.4	47
32	Nickel-doped MoSe2 nanosheets with Ni–Se bond for alkaline electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 10724-10728.	7.1	37
33	Exploring CoP core–shell nanosheets by Fe and Zn dual cation doping as efficient electrocatalysts for overall water splitting. Catalysis Science and Technology, 2020, 10, 1395-1400.	4.1	40
34	Bifunctional Electrocatalysts Based on Mo-Doped NiCoP Nanosheet Arrays for Overall Water Splitting. Nano-Micro Letters, 2019, 11, 55.	27.0	125
35	Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 554, 59-65.	9.4	70
36	Understanding the Effect of Surface Machining on the YSZ/Ti6Al4V Joint via Image Based Modelling. Scientific Reports, 2019, 9, 12027.	3.3	6

#	Article	IF	CITATIONS
37	Mn and S dual-doping of MOF-derived Co3O4 electrode array increases the efficiency of electrocatalytic generation of oxygen. Journal of Colloid and Interface Science, 2019, 557, 28-33.	9.4	26
38	Designing oxygen bonding between reduced graphene oxide and multishelled Mn ₃ O ₄ hollow spheres for enhanced performance of supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6686-6694.	10.3	103
39	Defectâ€Rich Heterogeneous MoS ₂ /NiS ₂ Nanosheets Electrocatalysts for Efficient Overall Water Splitting. Advanced Science, 2019, 6, 1900246.	11.2	468
40	Free-standing porous Ni2P-Ni5P4 heterostructured arrays for efficient electrocatalytic water splitting. Journal of Colloid and Interface Science, 2019, 552, 332-336.	9.4	49
41	Atomic-scale structural and chemical evolution of Li3V2(PO4)3 cathode cycled at high voltage window. Nano Research, 2019, 12, 1675-1681.	10.4	8
42	Hierarchical Fe2O3 and NiO nanotube arrays as advanced anode and cathode electrodes for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 794, 255-260.	5.5	45
43	Effect of Ni concentration on solderability, microstructure and hardness of SAC0705-xNi solder joints on Cu and graphene-coated Cu substrates. Modern Physics Letters B, 2019, 33, 1850425.	1.9	1
44	Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies. Journal of Materials Chemistry A, 2019, 7, 24486-24492.	10.3	227
45	In situ formation of TiB whiskers to reinforce SiO2-BN/Ti6Al4V brazed joints. Ceramics International, 2019, 45, 8054-8057.	4.8	16
46	Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery. Journal of Colloid and Interface Science, 2019, 536, 456-462.	9.4	70
47	The effect of annealing treatment on microstructure and shape memory behavior of Ti-Ta-Zr thin films. Vacuum, 2018, 153, 1-5.	3.5	8
48	Highâ€Performance Supercapacitors: In Situ Synthesis of Vertical Standing Nanosized NiO Encapsulated in Graphene as Electrodes for Highâ€Performance Supercapacitors (Adv. Sci. 3/2018). Advanced Science, 2018, 5, 1870019.	11.2	4
49	In Situ Synthesis of Vertical Standing Nanosized NiO Encapsulated in Graphene as Electrodes for Highâ€Performance Supercapacitors. Advanced Science, 2018, 5, 1700687.	11.2	117
50	Thermal stability and high-temperature shape memory effect of Ni 55.2 Mn 24.7 Ga 19.9 Gd 0.2 thin film. Vacuum, 2018, 147, 78-81.	3.5	5
51	Modifying the electrochemical performance of vertically-oriented few-layered graphene through rotary plasma processing. Journal of Materials Chemistry A, 2018, 6, 908-917.	10.3	46
52	Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 4807.	12.8	161
53	Mesostructured Carbon Nanotube-on-MnO ₂ Nanosheet Composite for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 38963-38969.	8.0	65
54	Core-branched CoSe ₂ /Ni _{0.85} Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19151-19158.	10.3	171

#	Article	IF	CITATIONS
55	Rational construction of core–shell Ni3S2@Ni(OH)2 nanostructures as battery-like electrodes for supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1985-1991.	6.0	37
56	Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15040-15046.	10.3	233
57	Damping Capacity of Ni–Mn–Ga–Gd High-Temperature Shape Memory Thin Film. Shape Memory and Superelasticity, 2018, 4, 369-376.	2.2	1
58	P-Doped NiCo ₂ S ₄ nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors. Dalton Transactions, 2018, 47, 8771-8778.	3.3	75
59	<i>In situ</i> encapsulated Fe ₃ O ₄ nanosheet arrays with graphene layers as an anode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24594-24601.	10.3	105
60	Making Superhydrophobic Surfaces with Microstripe Array Structure by Diffusion Bonding and Their Applications in Magnetic Control Microdroplet Release Systems. Advanced Materials Interfaces, 2017, 4, 1700918.	3.7	8
61	Hierarchical CuCo ₂ O ₄ @NiMoO ₄ core–shell hybrid arrays as a battery-like electrode for supercapacitors. Inorganic Chemistry Frontiers, 2017, 4, 1575-1581.	6.0	55
62	Superhydrophobicity: Making Superhydrophobic Surfaces with Microstripe Array Structure by Diffusion Bonding and Their Applications in Magnetic Control Microdroplet Release Systems (Adv.) Tj ETQq0 0 C) rg ₿. 7/Ove	erloak 10 Tf 5
63	Characterization of free-standing nanocrystalline Ni 55.2 Mn 24.7 Ga 19.9 Gd 0.2 high temperature shape memory thin film. Journal of Alloys and Compounds, 2016, 661, 43-48.	5.5	11
64	Welding and Joining of Titanium Aluminides. Materials, 2014, 7, 4930-4962.	2.9	45
65	Thermal stability of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy with large reversible strain. Materials Letters, 2014, 123, 250-253.	2.6	9
66	Thermal stability and high-temperature shape memory effect of Ti–Ta–Zr alloy. Scripta Materialia, 2013, 68, 1008-1011.	5.2	50
67	Effect of Ni substitution for Ga on the polycrystalline Ni–Mn–Ga–Gd high-temperature shape memory alloys. Journal of Alloys and Compounds, 2013, 557, 60-66.	5.5	21
68	Synthesis of graphene on a Ni film by radio-frequency plasma-enhanced chemical vapor deposition. Science Bulletin, 2012, 57, 3040-3044.	1.7	21
69	Cu-Based Multicomponent Metallic Compound Materials as Electrocatalyst for Water Splitting. Frontiers in Chemistry, 0, 10, .	3.6	5