List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1464894/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Palladium-Catalyzed Reactions of Allenes. Chemical Reviews, 2000, 100, 3067-3126.                                                                                                                                                                    | 47.7 | 817       |
| 2  | Hydrotalcite catalysis in ionic liquid medium: a recyclable reaction system for heterogeneous<br>Knoevenagel and nitroaldol condensation. Tetrahedron Letters, 2004, 45, 3055-3058.                                                                  | 1.4  | 114       |
| 3  | Chemoselective reduction of aromatic nitro and azo compounds in ionic liquids using zinc and ammonium salts. Tetrahedron Letters, 2003, 44, 7783-7787.                                                                                               | 1.4  | 104       |
| 4  | Electronic control of .pifacial selectivities in nucleophilic additions to 7-norbornanones. Journal of the American Chemical Society, 1990, 112, 6140-6142.                                                                                          | 13.7 | 90        |
| 5  | A Ruthenium-Catalyzed, Novel and Facile Procedure for the Conversion of Vicinal Dihaloalkenes to<br>α-Diketones. Journal of the American Chemical Society, 2000, 122, 9558-9559.                                                                     | 13.7 | 71        |
| 6  | A simple computational model for predicting .pifacial selectivity in reductions of sterically unbiased<br>ketones. Relative importance of electrostatic and orbital interactions. Journal of Organic Chemistry,<br>1993, 58, 1734-1739.              | 3.2  | 67        |
| 7  | An Easy Access to Î <sup>3</sup> -Lactone-Fused Cyclopentanoids. Journal of Organic Chemistry, 2002, 67, 3783-3787.                                                                                                                                  | 3.2  | 36        |
| 8  | Electrostatic vs. Orbital Control of Facial Selectivities in ? Systems: Experimental and Theoretical<br>Study of Electrophilic Additions to 7-Isopropylidenenorbornanes. Angewandte Chemie International<br>Edition in English, 1994, 33, 1390-1392. | 4.4  | 34        |
| 9  | Indenone derivatives as inhibitor of human DNA dealkylation repair enzyme AlkBH3. Bioorganic and Medicinal Chemistry, 2018, 26, 4100-4112.                                                                                                           | 3.0  | 33        |
| 10 | Azacrown-oxabridged macrocycle: a novel hybrid fluorogenic chemosensor for transition and heavy metal ions. Chemical Communications, 2009, , 2399.                                                                                                   | 4.1  | 32        |
| 11 | Modulation of π-facial selectivities in nucleophilic additions to 7-norbornenones. Tetrahedron<br>Letters, 1992, 33, 3065-3068.                                                                                                                      | 1.4  | 31        |
| 12 | Synthesis of a Novel, Highly Symmetric Bis-Oxa-Bridged Compound. Journal of the American Chemical<br>Society, 2002, 124, 2424-2425.                                                                                                                  | 13.7 | 31        |
| 13 | Total synthesis of (±)-pentenomycin. Tetrahedron Letters, 2006, 47, 5251-5253.                                                                                                                                                                       | 1.4  | 31        |
| 14 | Concise Synthesis of Novel Oxa-Bridged Compounds. Journal of Organic Chemistry, 2005, 70, 7565-7577.                                                                                                                                                 | 3.2  | 29        |
| 15 | Oxygen as moderator in the zinc-mediated reduction of aromatic nitro to azoxy compounds.<br>Tetrahedron Letters, 2009, 50, 3394-3396.                                                                                                                | 1.4  | 27        |
| 16 | Indium-Mediated, Highly Efficient and Diastereoselective Addition of Cyclic Secondary Allylic<br>Bromides to Carbonyl Compounds. Tetrahedron, 2000, 56, 7595-7599.                                                                                   | 1.9  | 24        |
| 17 | An Efficient Route to Pentasubstituted Phenols. European Journal of Organic Chemistry, 2006, 2006, 672-676.                                                                                                                                          | 2.4  | 23        |
| 18 | Modification of ï€-face selectivity of 7-norbornenones during reduction in β-cyclodextrin and solid<br>state. Tetrahedron Letters, 1992, 33, 7977-7980.                                                                                              | 1.4  | 22        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Syntheses of a library of molecules on the marine natural product ianthelliformisamines platform and their biological evaluation. Organic and Biomolecular Chemistry, 2014, 12, 3847.                                    | 2.8 | 20        |
| 20 | Ground state geometric distortions distal substituent effects in determining the β-facial selectivity in<br>7-norbornenones. Tetrahedron Letters, 1992, 33, 3069-3072.                                                   | 1.4 | 19        |
| 21 | Regio- and Diastereoselective Reduction of Nonenolizable α-Diketones to Acyloins Mediated by Indium<br>Metal. Organic Letters, 2002, 4, 1015-1018.                                                                       | 4.6 | 19        |
| 22 | A Novel and Expeditious Approach to Unusual Spirolactam Building Blocks. Journal of Organic<br>Chemistry, 2003, 68, 4556-4559.                                                                                           | 3.2 | 18        |
| 23 | Benzannulated Cyclooctanol Derivatives by Samarium Diiodide Induced Intramolecular<br>Carbonyl–Alkene Coupling – Scope, Limitations, Stereoselectivity. European Journal of Organic<br>Chemistry, 2006, 2006, 4419-4428. | 2.4 | 18        |
| 24 | A simple and preparatively useful tributylstannane mediated selective reduction and bridgehead functionalization of tetrahalonorbornene derivatives. Tetrahedron Letters, 1999, 40, 9289-9292.                           | 1.4 | 17        |
| 25 | Indium-Mediated Regio- and Diastereoselective Reduction of Norbornylα-Diketones. Chemistry - A<br>European Journal, 2004, 10, 2507-2519.                                                                                 | 3.3 | 17        |
| 26 | Grob Fragmentation of Norbornyl α-Diketones: A Route to α-Ketoenols and Aromatic Compounds.<br>Journal of Organic Chemistry, 2011, 76, 3320-3328.                                                                        | 3.2 | 16        |
| 27 | Total synthesis of a novel oxa-bowl natural product paracaseolide A via a â€~putative' biomimetic pathway. Tetrahedron Letters, 2013, 54, 3522-3525.                                                                     | 1.4 | 16        |
| 28 | A Rapid and Stereoselective Route to thetrans-Hydrindane Ring System. Journal of Organic Chemistry, 2004, 69, 5295-5301.                                                                                                 | 3.2 | 15        |
| 29 | A model approach towards the polycyclic framework present in cembranoid natural products dissectolide A, plumarellide and mandapamate. Tetrahedron Letters, 2014, 55, 7068-7071.                                         | 1.4 | 15        |
| 30 | A domino reaction of tetrahalo-7,7-dimethoxybicyclo[2.2.1]heptenyl alcohols leading to indenones and a de novo synthesis of ninhydrin derivatives. Organic and Biomolecular Chemistry, 2015, 13, 299-308.                | 2.8 | 15        |
| 31 | Synthesis of a novel, bowl-like bis $\hat{I}^3$ -lactone. Tetrahedron Letters, 2007, 48, 207-209.                                                                                                                        | 1.4 | 14        |
| 32 | Alkyl Enol Ethers: Development in Intermolecular Organic Transformation. Chemistry - an Asian<br>Journal, 2021, 16, 1685-1702.                                                                                           | 3.3 | 14        |
| 33 | A Novel Pd(0)-Catalyzed One-Pot Transformation of Substituted Siloxycyclopropanes to Indane<br>Derivatives. Synlett, 1996, 1996, 533-535.                                                                                | 1.8 | 13        |
| 34 | BF3-Et2O mediated skeletal rearrangements of norbornyl appended cyclopentanediols. Organic and<br>Biomolecular Chemistry, 2015, 13, 2768-2775.                                                                           | 2.8 | 13        |
| 35 | A short and stereoselective synthesis of functionalized pentenomycin derivatives. Tetrahedron<br>Letters, 2004, 45, 9285-9288.                                                                                           | 1.4 | 12        |
| 36 | Synthesis of marine brominated alkaloid amathamide F:ÂaÂpalladium-catalyzed enamide synthesis.<br>Tetrahedron, 2015, 71, 4192-4202.                                                                                      | 1.9 | 12        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Rearrangement of 1,4,5,6-tetrahalo-7,7-dimethoxybicyclo[2.2.1]hept-5-en-2-ones to phenolic derivatives.<br>Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3132-3134.                                           | 1.3 | 11        |
| 38 | A Formal Total Synthesis of (±)-Neplanocin A. Journal of Organic Chemistry, 2007, 72, 7011-7013.                                                                                                                                | 3.2 | 11        |
| 39 | Synthesis of Reported and Revised Structures of Amathamide D and Synthesis of Convolutamine F, H<br>and Lutamide A, C. Journal of Organic Chemistry, 2012, 77, 2389-2397.                                                       | 3.2 | 11        |
| 40 | Superoxide mediated isomerization of 4-aryl-but-1-ynes to 1-aryl-1,3-butadienes. Tetrahedron, 2015, 71, 7600-7607.                                                                                                              | 1.9 | 11        |
| 41 | Synthesis and electrochemical properties of substituted para-benzoquinone derivatives. Tetrahedron<br>Letters, 2010, 51, 2541-2544.                                                                                             | 1.4 | 10        |
| 42 | Synthesis of wilsoniamines A and B. Tetrahedron Letters, 2013, 54, 2996-2998.                                                                                                                                                   | 1.4 | 10        |
| 43 | 1â€Butylâ€3â€methylâ€imidazolium Tetrafluoroborate as a Recyclable Reaction Medium for Henry Reaction.<br>Synthetic Communications, 2005, 35, 201-207.                                                                          | 2.1 | 9         |
| 44 | Synthesis of tribromobenzofuran and tribromobenzopyran derivatives from methyl<br>2-allyl-4,5,6-tribromo-3-hydroxybenzoate. Tetrahedron Letters, 2007, 48, 85-88.                                                               | 1.4 | 9         |
| 45 | A short, general, Suzuki–Miyaura coupling anchored approach to 3-alkenylbutenolides: total<br>synthesis of akolactones A & B, hamabiwalactone B and ancepsenolide. Tetrahedron, 2015, 71,<br>3209-3215.                         | 1.9 | 9         |
| 46 | Symmetrical and un-symmetrical curcumin analogues as selective COX-1 and COX-2 inhibitor. European<br>Journal of Pharmaceutical Sciences, 2021, 160, 105743.                                                                    | 4.0 | 9         |
| 47 | An Efficient Synthesis of Substituted <i>meta</i> â€Halophenols and Their Methyl Ethers: Insight into the<br>Reaction Mechanism. European Journal of Organic Chemistry, 2010, 2010, 2954-2970.                                  | 2.4 | 8         |
| 48 | Grob-type fragmentation of 5-oxabicyclo[2.1.1]hexane system: a strategy for synthesis of annulated and 2,2,5-trisubstituted tetrahydrofurans. Tetrahedron, 2013, 69, 8494-8504.                                                 | 1.9 | 8         |
| 49 | Direct α-Benzylation of Methyl Enol Ethers with Activated Benzyl Alcohols: Its Rearrangement and<br>Access to (±)-Tetrahydronyasol, Propterol A, and 1,3-Diarylpropane. Journal of Organic Chemistry,<br>2019, 84, 14270-14280. | 3.2 | 8         |
| 50 | Synthesis and antibacterial activities of marine natural product ianthelliformisamines and subereamine synthetic analogues. Bioorganic and Medicinal Chemistry Letters, 2021, 39, 127883.                                       | 2.2 | 8         |
| 51 | A new reaction of diazomethane with norbornyl α-diketones. Tetrahedron Letters, 2005, 46, 7193-7196.                                                                                                                            | 1.4 | 7         |
| 52 | An efficient synthesis of diquinane-based bis-γ-lactones. Tetrahedron Letters, 2006, 47, 7567-7570.                                                                                                                             | 1.4 | 7         |
| 53 | Serendipitously Discovered Diazomethane-Mediated Novel Molecular Rearrangements of Norbornyl<br>α-Ketohemiketals. Organic Letters, 2007, 9, 1581-1584.                                                                          | 4.6 | 7         |
| 54 | A stereoselective CC free-radical cascade route to optically pure and potentially useful tetracyclic<br>amines. Tetrahedron Letters, 2008, 49, 6111-6114.                                                                       | 1.4 | 7         |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis of carbazole analogs via Grob fragmentation of norbornyl α-diketones. Tetrahedron Letters, 2016, 57, 3449-3452.                                                                                      | 1.4 | 7         |
| 56 | Synthesis of Trichlorophenol Derivatives. Synthetic Communications, 2006, 36, 3749-3760.                                                                                                                       | 2.1 | 6         |
| 57 | Lead(iv) acetate: intriguing reactivity profile. Chemical Communications, 2007, , 4239.                                                                                                                        | 4.1 | 6         |
| 58 | Superoxide chemistry revisited: synthesis of tetrachloro-substituted methylenenortricyclenes.<br>Beilstein Journal of Organic Chemistry, 2014, 10, 2531-2538.                                                  | 2.2 | 6         |
| 59 | Total synthesis of novel bioactive natural product paracaseolide A and analogues: computational<br>evaluation of a â€~proposed' biomimetic Diels–Alder reaction. Tetrahedron, 2014, 70, 8488-8497.             | 1.9 | 6         |
| 60 | An unusual formation of diarylmethane scaffolds from 4-(halomethyl)cyclohex-2-enone derivatives.<br>Tetrahedron Letters, 2015, 56, 4067-4070.                                                                  | 1.4 | 6         |
| 61 | Total Synthesis of (±)-Cassumunins A–C and Curcumin Analogues. Synthesis, 2020, 52, 1561-1575.                                                                                                                 | 2.3 | 6         |
| 62 | Synthesis of 2 hloroâ€3â€amino indenone derivatives and their evaluation as inhibitors of DNA<br>dealkylation repair. Chemical Biology and Drug Design, 2021, 97, 1170-1184.                                   | 3.2 | 6         |
| 63 | A Chiral Pool Approach to the Synthesis of Optically Active Tetrahalo Norbornyl Building Blocks.<br>Organic Letters, 2008, 10, 3029-3032.                                                                      | 4.6 | 5         |
| 64 | Synthesis and thermal properties of rigid oxa-bridged-containing dimers and tetramers. Tetrahedron, 2010, 66, 8745-8755.                                                                                       | 1.9 | 5         |
| 65 | Synthesis of the tetrahydrofuran unit of varitriol and Î <sup>3</sup> -butyrolactones from 5-oxabicyclo[2.1.1]hexane<br>derivative via oxidative cleavage reactions. Tetrahedron Letters, 2014, 55, 2266-2269. | 1.4 | 5         |
| 66 | FeCl3 catalyzed intermolecular reaction between enol ethers and anilines: Access to 2,3-substituted indoles through aryl group migration. Tetrahedron Letters, 2020, 61, 152583.                               | 1.4 | 5         |
| 67 | Synthesis of oxa-bridged derivatives from Diels–Alder bis-adducts of butadiene and<br>1,2,3,4-tetrahalo-5,5-dimethoxycyclopentadiene. Beilstein Journal of Organic Chemistry, 2010, 6, .                       | 2.2 | 4         |
| 68 | Total syntheses of (±)-cis- and (±)-trans-neocnidilides. Tetrahedron Letters, 2014, 55, 4400-4403.                                                                                                             | 1.4 | 4         |
| 69 | Aromaticity driven 1,6-conjugate addition of amines and phenols to cyclohexadienone derivative.<br>Tetrahedron, 2016, 72, 699-705.                                                                             | 1.9 | 4         |
| 70 | Total synthesis of (±) aspidostomide B, C, regioisomeric N-methyl aspidostomide D and their<br>derivatives. Tetrahedron Letters, 2019, 60, 151040.                                                             | 1.4 | 4         |
| 71 | Synthesis of 9-oxa-noradamantane derivative, an aesthetically pleasing 'oxa-basket'. Tetrahedron<br>Letters, 2009, 50, 5751-5753.                                                                              | 1.4 | 3         |
| 72 | Diastereoselective Synthesis of Spirocyclic Dihydrofurans and 1â€Oxaspiro[4.5]decanâ€6â€one Derivatives<br>from Norbornyl αâ€Diketones. European Journal of Organic Chemistry, 2015, 2015, 858-870.            | 2.4 | 3         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | N -dealkylative S N Ar reaction using aromatic halides: Synthesis of dihydrobenzoxazine and tetrahydrobenzoxazepine derivatives. Tetrahedron, 2017, 73, 6008-6020.                                                                 | 1.9 | 3         |
| 74 | 1,6-Conjugate addition of C-nucleophiles to p-quinone methide surrogate: Synthesis of diarylpropanes.<br>Tetrahedron, 2019, 75, 633-642.                                                                                           | 1.9 | 3         |
| 75 | Acid mediated synthesis of thiazolines, thiazoles and enamide derivatives from methyl enol ethers:<br>Application towards synthesis of wilsoniamine B. Tetrahedron Letters, 2020, 61, 151675.                                      | 1.4 | 3         |
| 76 | Rutheniumâ€Mediated Oxidation under Buffered Conditions: A Simple and Useful Protocol for the<br>Synthesis of Norbornyl αâ€Diketones with Acid Sensitive Functionalities. Advanced Synthesis and<br>Catalysis, 2009, 351, 939-944. | 4.3 | 2         |
| 77 | Total Synthesis of Enisorine D and its Analogues. Synthesis, 2019, 51, 4601-4610.                                                                                                                                                  | 2.3 | 2         |
| 78 | FeCl3 catalyzed 1,6-conjugate addition of phenol C-nucleophiles: Facile synthesis of diarylmethanes.<br>Tetrahedron, 2020, 76, 130885.                                                                                             | 1.9 | 2         |
| 79 | BrÃ,nsted acid-induced synthesis of methyl benzofurans via Grob type fragmentation of norbornyl derivatives. Tetrahedron Letters, 2020, 61, 152351.                                                                                | 1.4 | 2         |
| 80 | An efficient method for zinc mediated reduction of norbornyl α-diketones in [bmim][BF4]:H2O. Arkivoc, 2009, 222-228.                                                                                                               | 0.5 | 2         |
| 81 | Short, Convenient Preparative Procedures for 7-Isopropylidenenorbornane,<br>7-Isopropylidenenorbornene, and 7-Isopropylidenenorbornadiene. Synthetic Communications, 1993, 23,<br>2985-2990.                                       | 2.1 | 1         |
| 82 | Synthesis and Electrochemical Signature of Novel Norbornyl-ferrocene Hybrids. Synthesis, 2009, 2009, 2773-2777.                                                                                                                    | 2.3 | 1         |
| 83 | An Efficient Synthesis of a Cyclopentannulated Pyrrolidine Derivative. Synthesis, 2011, 2011, 2423-2430.                                                                                                                           | 2.3 | 1         |
| 84 | An Unusual Fragmentation of Oxetane-Embedded Tetracyclic Ketal Systems. Journal of Organic<br>Chemistry, 2013, 78, 11092-11095.                                                                                                    | 3.2 | 1         |
| 85 | Effect of bridgehead substitution in the Grob fragmentation of norbornyl ketones: a new route to substituted halophenols. Organic and Biomolecular Chemistry, 2015, 13, 9686-9696.                                                 | 2.8 | 1         |
| 86 | An unexpected acid mediated rearrangement of monoethylene ketal of<br>2-methyl-2-(3-methylbut-2-en-1-yl)cyclohex-4-ene-1,3-diones to chromane. Tetrahedron Letters, 2018, 59,<br>1244-1248.                                        | 1.4 | 1         |
| 87 | Synthesis of $\hat{I}^3$ -butyrolactone fused cyclooctene. Synthetic Communications, 2018, 48, 318-322.                                                                                                                            | 2.1 | 1         |
| 88 | Synthesis of Substituted Pyrido-oxazine through Tandem SN2 and SNAr Reaction. SynOpen, 2018, 02, 0150-0160.                                                                                                                        | 1.7 | 1         |
| 89 | Solvent controlled synthesis of 2,3-diarylepoxy indenones and α-hydroxy diarylindanones and their evaluation as inhibitors of DNA alkylation repair. Organic and Biomolecular Chemistry, 0, , .                                    | 2.8 | 1         |
| 90 | A Solvent Effect in the Reaction of Diazomethane with Norbornane-2,3-dione 3-Hemiketals. Synthetic<br>Communications, 2014, 44, 3314-3319.                                                                                         | 2.1 | 0         |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Bridgehead Substitution via Putative Norbornâ€lâ€enâ€3â€ones: Application in the Synthesis of Complex<br>Molecules. Chemistry - A European Journal, 2015, 21, 7021-7025. | 3.3 | 0         |
| 92 | Triethylamine–Mesyl Chloride/Thionyl Chloride: A Reagent for Hydrodebromination of<br>Diquinane-Based α-Bromo-γ-Lactones. Synthesis, 2015, 47, 3027-3035.                | 2.3 | 0         |