Isabel S. Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1464653/publications.pdf

Version: 2024-02-01

236925 155660 3,221 61 25 55 citations h-index g-index papers 63 63 63 5130 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Annals of Botany, 2002, 89, 907-916.	2.9	1,523
2	A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Industrial Crops and Products, 2015, 65, 247-258.	5.2	137
3	A realistic scenario on microalgae based biodiesel production: Third generation biofuel. Fuel, 2021, 284, 118965.	6.4	97
4	Phenolic composition and antioxidant capacity of six artemisia species. Industrial Crops and Products, 2011, 33, 382-388.	5.2	92
5	Evaluation of oil composition of some crops suitable for human nutrition. Industrial Crops and Products, 2006, 24, 75-78.	5.2	87
6	Effect of photoperiod on flavonoid pathway activity in sweet potato (Ipomoea batatas (L.) Lam.) leaves. Food Chemistry, 2010, 118, 384-390.	8.2	86
7	Mechanism of action of probiotics. Brazilian Archives of Biology and Technology, 2013, 56, 113-119.	0.5	73
8	ï‰-3 Fatty Acid Desaturase Genes Isolated from Purslane (<i>Portulaca oleracea</i> L.): Expression in Different Tissues and Response to Cold and Wound Stress. Journal of Agricultural and Food Chemistry, 2010, 58, 1870-1877.	5.2	61
9	Recent developments in therapeutic applications of Cyanobacteria. Critical Reviews in Microbiology, 2016, 42, 1-12.	6.1	59
10	Effects of salt stress on purslane (<i>Portulaca oleracea</i>) nutrition. Annals of Applied Biology, 2009, 154, 77-86.	2.5	50
11	Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni-Suef University Journal of Basic and Applied Sciences, 2018, 7, 740-747.	2.0	49
12	Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnology Letters, 2009, 31, 1089-1101.	2.2	47
13	Antibacterial, antioxidant and anti-proliferative properties and zinc content of five south Portugal herbs. Pharmaceutical Biology, 2017, 55, 114-123.	2.9	43
14	Chemical Composition, Antioxidant and α-Glucosidase-Inhibiting Activities of the Aqueous and Hydroethanolic Extracts of Vaccinium myrtillus Leaves. Molecules, 2017, 22, 703.	3.8	42
15	Modelling of Microwave Assisted Extraction (MAE) of Anthocyanins (TMA). Journal of Applied Research on Medicinal and Aromatic Plants, 2017, 6, 92-100.	1.5	40
16	Sugar metabolism in developing lupin seeds is affected by a short-term water deficit. Journal of Experimental Botany, 2005, 56, 2705-2712.	4.8	38
17	Influence of Water Stress on the Chemical Composition of Seeds of Two Lupins (Lupinus albus and) Tj ETQq $1\ 1$	0.784314	rgBT/Overloc
18	An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Applied Microbiology and Biotechnology, 2012, 96, 1125-1135.	3.6	36

#	Article	IF	Citations
19	Current strategies and prospects in algae for remediation and biofuels: An overview. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102045.	3.1	34
20	The impact of germination time on the some selected parameters through malting process. International Journal of Biological Macromolecules, 2017, 94, 663-668.	7.5	32
21	Screening of the Antioxidant and Enzyme Inhibition Potentials of Portuguese Pimpinella anisum L. Seeds by GC-MS. Food Analytical Methods, 2018, 11, 2645-2656.	2.6	31
22	Quality and Distribution of Assimilates within the Whole Plant of Lupines (L. albus and L. mutabilis) Influenced by Water Stress. Journal of Agronomy and Crop Science, 2004, 190, 205-210.	3.5	30
23	CHEMICAL AND MICROBIAL CHANGES DURING THE NATURAL FERMENTATION OF STRAWBERRY TREE (ARBUTUS UNEDO L.) FRUITS. Journal of Food Biochemistry, 2007, 31, 715-725.	2.9	29
24	Identification of Predominant Phytochemical Compounds and Cytotoxic Activity of Wild Olive Leaves (<i>Olea europaea</i> L. ssp. <i>sylvestris</i>) Harvested in South Portugal. Chemistry and Biodiversity, 2017, 14, e1600331.	2.1	29
25	Antioxidant and cytotoxic activities of sulfated polysaccharides from five different edible seaweeds. Journal of Food Measurement and Characterization, 2021, 15, 567-576.	3.2	29
26	Fatty acids profile of selected Artemisia spp. plants: Health promotion. LWT - Food Science and Technology, 2011, 44, 293-298.	5.2	26
27	Food Composition Databases: Does It Matter to Human Health?. Nutrients, 2021, 13, 2816.	4.1	26
28	Phenolics extraction from sweet potato peels: Key factors screening through a Placket–Burman design. Industrial Crops and Products, 2013, 43, 99-105.	5.2	24
29	Phycoremediation potential of Chlorella sp. on the polluted Thirumanimutharu river water. Chemosphere, 2021, 277, 130246.	8.2	24
30	Accumulation of fatty acids in purslane grown in hydroponic salt stress conditions. International Journal of Food Sciences and Nutrition, 2013, 64, 235-242.	2.8	21
31	Phenolics extraction from sweet potato peels: modelling and optimization by response surface modelling and artificial neural network. Journal of Food Science and Technology, 2016, 53, 4117-4125.	2.8	21
32	Antioxidant activity and lipid profile of three seaweeds of Faro, Portugal. Revista Brasileira De Botanica, 2016, 39, 9-17.	1.3	21
33	<i>In vitro</i> Antioxidant Activity, Phenolic Compounds and Protective Effect against DNA Damage Provided by Leaves, Stems and Flowers of <i>Portulaca oleracea</i> (Purslane). Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	20
34	Assessment of microbial diversity and enumeration of metal tolerant autochthonous bacteria from tailings of magnesite and bauxite mines. Materials Today: Proceedings, 2020, 33, 4391-4401.	1.8	20
35	Application of an adaptive neuro_fuzzy inference system (ANFIS) in the modeling of rapeseeds' oil extraction. Journal of Food Process Engineering, 2017, 40, e12562.	2.9	18
36	Effect of Erica australis extract on Caco-2 cells, fibroblasts and selected pathogenic bacteria responsible for wound infection. Industrial Crops and Products, 2014, 52, 99-104.	5.2	16

#	Article	IF	CITATIONS
37	Antioxidant and Free Radical Scavenging Activities of Different Plant Parts from Two <i><scp>E</scp>rica</i> Species. Journal of Food Quality, 2012, 35, 307-314.	2.6	15
38	Modelling of mass transfer kinetic in osmotic dehydration of kiwifruit. International Agrophysics, 2016, 30, 185-191.	1.7	15
39	Modelling of the Selected Physical Properties of the Fava Bean with Various Moisture Contents Using <i>Fuzzy Logic </i> Design. Journal of Food Process Engineering, 2017, 40, e12366.	2.9	14
40	Brown seaweeds as a source of anti-hyaluronidase compounds. South African Journal of Botany, 2021, 139, 470-477.	2.5	13
41	Antioxidant activities, distribution of phenolics and free amino acids of <i>Erica australis </i> L. leaves and flowers collected in Algarve, Portugal. Natural Product Research, 2013, 27, 1664-1667.	1.8	10
42	Screening of the aerodynamic and biophysical properties of barley malt. International Agrophysics, 2016, 30, 457-464.	1.7	10
43	Determination of Essential Minerals and Trace Elements in Edible Sprouts from Different Botanical Familiesâ€"Application of Chemometric Analysis. Foods, 2022, 11, 371.	4.3	10
44	Biomass from Microalgae: An Overview. Oceanography Open Access, 2014, 02, .	0.1	9
45	Screening of the alterations in qualitative characteristics of grape under the impacts of storage and harvest times using artificial neural network. Evolving Systems, 2018, 9, 81-89.	3.9	9
46	EFFECTS OF WATER STRESS ON THE PROXIMATE COMPOSITION AND MINERAL CONTENTS OF SEEDS OF TWO LUPINS (LUPINUS ALBUS AND LUPINUS MUTABILIS). Journal of Food Quality, 2005, 28, 325-332.	2.6	8
47	Spotlight on PGI Sweet Potato from Europe: Study of Plant Part, Time and Solvent Effects on Antioxidant Activity. Journal of Food Biochemistry, 2013, 37, 628-637.	2.9	8
48	Chemical Composition, Antioxidant, and α-Glucosidase-Inhibiting Activity of Aqueous and Hydroethanolic Extracts of Traditional Antidiabetics from Croatian Ethnomedicine. Horticulturae, 2021, 7, 15.	2.8	7
49	Impact of industrial salt effluent and seaweed liquid fertilizers on three microalgae. Revista Brasileira De Botanica, 2015, 38, 547-553.	1.3	6
50	Effect of <i>Betula pendula</i> Leaf Extract on <i>α</i> -Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-8.	1.2	6
51	Microalgae as an Attractive Source for Biofuel Production. , 2015, , 129-157.		5
52	Development of a beverage benchtop prototype based on sweet potato peels: optimization of antioxidant activity by a mixture design. International Journal of Food Sciences and Nutrition, 2016, 67, 496-506.	2.8	5
53	Algal Biotechnology. , 2018, , 31-52.		5
54	Evaluation of Proximate Composition, Antioxidant Properties, and Phylogenetic Analysis of Two Edible Seaweeds. Smart Science, 2020, 8, 95-100.	3.2	5

#	Article	IF	CITATIONS
55	EFFICIENCY OF TRIPLE EMITTER SOURCE (TES) FOR IRRIGATION EXPERIMENTS OF HORTICULTURAL CROPS. Acta Horticulturae, 2002, , 183-188.	0.2	3
56	Isolation and characterization of two novel plasmids pCYM01 and pCYM02 of Cylindrospermum stagnale. Saudi Journal of Biological Sciences, 2020, 27, 535-542.	3.8	3
57	- Towards Engineering Dark-Operative Chlorophyll Synthesis Pathways in Transgenic Plastids. , 2013, , 408-421.		3
58	Omics Approaches in Fungal Biotechnology. , 2018, , 53-70.		2
59	Internal Transcribed sequence (ITS) of Halocafeteria seosinensis (Bicosoecids). Beni-Suef University Journal of Basic and Applied Sciences, 2017, 6, 266-268.	2.0	1
60	Exploring On-Line Meteorological Resources in Engineering. International Journal of Online Engineering, 2016, 12, 28.	0.5	1
61	Algae biotechnology for nutritional and pharmaceutical applications. , 2022, , 177-194.		1