Igor Coropceanu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1464538/igor-coropceanu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

29 1,310 17 32 g-index

32 1,600 15 4.67 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
29	Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals <i>Science</i> , 2022 , 375, 1422-1426	33.3	6
28	Nanoscale Disorder Generates Subdiffusive Heat Transport in Self-Assembled Nanocrystal Films. <i>Nano Letters</i> , 2021 , 21, 3540-3547	11.5	1
27	Direct Optical Lithography of Colloidal Metal Oxide Nanomaterials for Diffractive Optical Elements with 2IPhase Control. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2372-2383	16.4	4
26	Nonequilibrium Thermodynamics of Colloidal Gold Nanocrystals Monitored by Ultrafast Electron Diffraction and Optical Scattering Microscopy. <i>ACS Nano</i> , 2020 , 14, 4792-4804	16.7	13
25	Quantized Reaction Pathways for Solution Synthesis of Colloidal ZnSe Nanostructures: A Connection between Clusters, Nanowires, and Two-Dimensional Nanoplatelets. <i>ACS Nano</i> , 2020 , 14, 3847-3857	16.7	30
24	Luminescent Surfaces with Tailored Angular Emission for Compact Dark-Field Imaging Devices. <i>Nature Photonics</i> , 2020 , 14, 310-315	33.9	21
23	Bright trion emission from semiconductor nanoplatelets. <i>Physical Review Materials</i> , 2020 , 4,	3.2	9
22	Titanium Nitride Modified Photoluminescence from Single Semiconductor Nanoplatelets. <i>Advanced Functional Materials</i> , 2020 , 30, 1904179	15.6	4
21	Optical Patterning: Direct Optical Patterning of Quantum Dot Light-Emitting Diodes via In Situ Ligand Exchange (Adv. Mater. 46/2020). <i>Advanced Materials</i> , 2020 , 32, 2070346	24	
20	Heat-driven acoustic phonons in lamellar nanoplatelet assemblies. <i>Nanoscale</i> , 2020 , 12, 9661-9668	7.7	3
19	Direct Optical Patterning of Quantum Dot Light-Emitting Diodes via In Situ Ligand Exchange. <i>Advanced Materials</i> , 2020 , 32, e2003805	24	14
18	Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells. <i>Nature Communications</i> , 2019 , 10, 4511	17.4	23
17	Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection. Journal of the American Chemical Society, 2019 , 141, 5728-5740	16.4	25
16	Colloidal Atomic Layer Deposition with Stationary Reactant Phases Enables Precise Synthesis of "Digital" II-VI Nano-heterostructures with Exquisite Control of Confinement and Strain. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13487-13496	16.4	41
15	Terahertz-Driven Stark Spectroscopy of CdSe and CdSe-CdS Core-Shell Quantum Dots. <i>Nano Letters</i> , 2019 , 19, 8125-8131	11.5	4
14	A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4652-4656	16.4	22
13	A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry. <i>Angewandte Chemie</i> , 2018 , 130, 4742-4746	3.6	7

LIST OF PUBLICATIONS

12	Multiexciton Lifetimes Reveal Triexciton Emission Pathway in CdSe Nanocrystals. <i>Nano Letters</i> , 2018 , 18, 5153-5158	11.5	18
11	Semiconductor Nanoplatelet Excimers. <i>Nano Letters</i> , 2018 , 18, 6948-6953	11.5	37
10	Direct Synthesis of Six-Monolayer (1.9 nm) Thick Zinc-Blende CdSe Nanoplatelets Emitting at 585 nm. <i>Chemistry of Materials</i> , 2018 , 30, 6957-6960	9.6	60
9	Next-generation optical imaging with short-wave infrared quantum dots. <i>Nature Biomedical Engineering</i> , 2017 , 1,	19	360
8	Terahertz-Driven Luminescence and Colossal Stark Effect in CdSe-CdS Colloidal Quantum Dots. <i>Nano Letters</i> , 2017 , 17, 5375-5380	11.5	28
7	A Low Reabsorbing Luminescent Solar Concentrator Employing Econjugated Polymers. <i>Advanced Materials</i> , 2016 , 28, 497-501	24	61
6	Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths. <i>Nano Letters</i> , 2016 , 16, 289-	96 ^{1.5}	109
5	Slow-Injection Growth of Seeded CdSe/CdS Nanorods with Unity Fluorescence Quantum Yield and Complete Shell to Core Energy Transfer. <i>ACS Nano</i> , 2016 , 10, 3295-301	16.7	77
4	Thermal Recovery of Colloidal Quantum Dot Ensembles Following Photoinduced Dimming. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2933-7	6.4	3
3	Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. <i>Nano Letters</i> , 2014 , 14, 4097-101	11.5	251
2	Sample-averaged biexciton quantum yield measured by solution-phase photon correlation. <i>Nano Letters</i> , 2014 , 14, 6792-8	11.5	19
1	Crosslinking using rapid thermal processing for the fabrication of efficient solution-processed phosphorescent organic light-emitting diodes. <i>Advanced Materials</i> , 2013 , 25, 1739-44	24	60