
Bingcheng Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1464243/publications.pdf Version: 2024-02-01

RINCCHENC YI

#	Article	IF	CITATIONS
1	An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioactive Materials, 2022, 15, 82-102.	8.6	77
2	Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells. ACS Applied Materials & Interfaces, 2019, 11, 6867-6880.	4.0	72
3	Highly aligned core–shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration. Nanoscale, 2016, 8, 16307-16322.	2.8	62
4	Electrospun acid-neutralizing fibers for the amelioration of inflammatory response. Acta Biomaterialia, 2019, 97, 200-215.	4.1	53
5	Fabrication of high performance silk fibroin fibers <i>via</i> stable jet electrospinning for potential use in anisotropic tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 3934-3945.	2.9	52
6	Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells. Acta Biomaterialia, 2020, 108, 237-249.	4.1	37
7	Engineering a Highly Biomimetic Chitosan-Based Cartilage Scaffold by Using Short Fibers and a Cartilage-Decellularized Matrix. Biomacromolecules, 2021, 22, 2284-2297.	2.6	30
8	Fabrication of the composite nanofibers of NiO \hat{I}^3 -Al2O3 for potential application in photocatalysis. Ceramics International, 2016, 42, 17405-17409.	2.3	29
9	Shape Memory and Osteogenesis Capabilities of the Electrospun Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Modified Poly(l-Lactide) Fibrous Mats. Tissue Engineering - Part A, 2021, 27, 142-152.	1.6	19
10	Understanding the cellular responses based on low-density electrospun fiber networks. Materials Science and Engineering C, 2021, 119, 111470.	3.8	17
11	Lysine-doped polydopamine coating enhances antithrombogenicity and endothelialization of an electrospun aligned fibrous vascular graft. Applied Materials Today, 2021, 25, 101198.	2.3	16
12	Synergistic effects of mechanical stimulation and crimped topography to stimulate natural collagen development for tendon engineering. Acta Biomaterialia, 2022, 145, 297-315.	4.1	6
13	Effects of GO and rGO incorporated nanofibrous scaffolds on the proliferation of Schwann cells. Biomedical Physics and Engineering Express, 2019, 5, 025002.	0.6	5
14	Engineering a Mechanoactive Fibrous Substrate with Enhanced Efficiency in Regulating Stem Cell Tenodifferentiation. ACS Applied Materials & Interfaces, 2022, 14, 23219-23231.	4.0	4
15	Regeneration of Subcutaneous Cartilage in a Swine Model Using Autologous Auricular Chondrocytes and Electrospun Nanofiber Membranes Under Conditions of Varying Gelatin/PCL Ratios. Frontiers in Bioengineering and Biotechnology, 2021, 9, 752677.	2.0	2
16	Step-wise CAG@PLys@PDA-Cu2+ modification on micropatterned nanofibers for programmed endothelial healing. Bioactive Materials, 2023, 25, 657-676.	8.6	2
17	Comparative Study of Traditional Single-Needle Electrospinning and Novel Spiral-Vane Electrospinning: Influence on the Properties of Poly(caprolactone)/Gelatin Nanofiber Membranes. Frontiers in Bioengineering and Biotechnology, 2022, 10, 847800.	2.0	1