Jin-Long Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1463164/publications.pdf

Version: 2024-02-01

		218592	377752
35	8,777 citations	26	34
papers	citations	h-index	g-index
25	25	25	7000
35	35	35	7900
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 2022, 602, 455-460.	13.7	181
2	Highly efficient genome editing in <i>Xanthomonas oryzae</i> pv.Â <i>oryzae</i> through repurposing the endogenous type lâ€CÂCRISPRâ€Cas system. Molecular Plant Pathology, 2022, 23, 583-594.	2.0	8
3	Being tough: The secret weapon of plants against vascular pathogens. Molecular Plant, 2022, 15, 934-936.	3.9	1
4	High-efficiency prime editing with optimized, paired pegRNAs in plants. Nature Biotechnology, 2021, 39, 923-927.	9.4	189
5	Genome-wide specificity of prime editors in plants. Nature Biotechnology, 2021, 39, 1292-1299.	9.4	80
6	Genome editing in plants with MAD7 nuclease. Journal of Genetics and Genomics, 2021, 48, 444-451.	1.7	25
7	Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Science China Life Sciences, 2020, 63, 1918-1927.	2.3	23
8	SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biology, 2020, 21, 141.	3.8	38
9	Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1) to nick the target DNA strand. Science China Life Sciences, 2020, 63, 1619-1630.	2.3	10
10	Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9. Nature Biotechnology, 2020, 38, 1460-1465.	9.4	49
11	Targeted mutagenesis in ryegrass (<i>Lolium</i> spp.) using the CRISPR/Cas9 system. Plant Biotechnology Journal, 2020, 18, 1854-1856.	4.1	25
12	Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology, 2020, 38, 875-882.	9.4	259
13	Postinvasive Bacterial Resistance Conferred by Open Stomata in Rice. Molecular Plant-Microbe Interactions, 2019, 32, 255-266.	1.4	33
14	Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo. Genome Biology, 2019, 20, 145.	3.8	75
15	Genome editing for plant disease resistance: applications and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180322.	1.8	95
16	Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019, 364, 292-295.	6.0	491
17	Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols, 2018, 13, 413-430.	5.5	179
18	Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule. Plant Biotechnology Journal, 2018, 16, 472-481.	4.1	3

#	Article	lF	CITATIONS
19	Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36, 950-953.	9.4	310
20	Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 2017, 35, 438-440.	9.4	690
21	Progress and prospects in plant genome editing. Nature Plants, 2017, 3, 17107.	4.7	349
22	Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus. Science China Life Sciences, 2017, 60, 891-901.	2.3	29
23	Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biology, 2017, 18, 191.	3.8	111
24	MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis. Plant Cell, 2016, 28, 2866-2883.	3.1	166
25	Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7, 12617.	5.8	710
26	Identification and Characterization of ABA-Responsive MicroRNAs in Rice. Journal of Genetics and Genomics, 2015, 42, 393-402.	1.7	66
27	The chloride channel family gene CLCd negatively regulates pathogen-associated molecular pattern (PAMP)-triggered immunity in Arabidopsis. Journal of Experimental Botany, 2014, 65, 1205-1215.	2.4	46
28	The roles of anion channels in Arabidopsisimmunity. Plant Signaling and Behavior, 2014, 9, e29230.	1.2	4
29	Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32, 947-951.	9.4	1,635
30	Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31, 686-688.	9.4	1,657
31	Direct Modulation of Protein Level in Arabidopsis. Molecular Plant, 2013, 6, 1711-1714.	3.9	11
32	Coimmunoprecipitation (co-IP) of Nuclear Proteins and Chromatin Immunoprecipitation (ChIP) from <i>Arabidopsis</i> . Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5049.	0.2	38
33	Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO Journal, 2008, 27, 2214-2221.	3.5	445
34	Arabidopsis Mitogen-Activated Protein Kinase Kinases MKK1 and MKK2 Have Overlapping Functions in Defense Signaling Mediated by MEKK1, MPK4, and MKS1. Plant Physiology, 2008, 148, 212-222.	2.3	266
35	The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO Journal, 2005, 24, 2579-2589.	3.5	480