List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1462681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoprotective compounds as early markers to predict holm oak crown defoliation in declining Mediterranean savannahs. Tree Physiology, 2022, 42, 208-224.	1.4	15
2	Heatwave breaks down the linearity between sunâ€induced fluorescence and gross primary production. New Phytologist, 2022, 233, 2415-2428.	3.5	51
3	Holm oak decline is determined by shifts in fine root phenotypic plasticity in response to belowground stress. New Phytologist, 2022, 235, 2237-2251.	3.5	13
4	Carbon sequestration offsets a large share of GHG emissions in dehesa cattle production. Journal of Cleaner Production, 2022, 358, 131918.	4.6	13
5	Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes. Agricultural and Forest Meteorology, 2022, 323, 109060.	1.9	3
6	Wheat and barley cultivars show plant traits acclimation and increase grain yield under simulated shade in Mediterranean conditions. Journal of Agronomy and Crop Science, 2021, 207, 100-119.	1.7	9
7	Dehesas as high nature value farming systems: a social-ecological synthesis of drivers, pressures, state, impacts, and responses. Ecology and Society, 2021, 26, .	1.0	30
8	Trees Increase Ant Species Richness and Change Community Composition in Iberian Oak Savannahs. Diversity, 2021, 13, 115.	0.7	3
9	Using terrestrial laser scanning for characterizing tree structural parameters and their changes under different management in a Mediterranean open woodland. Forest Ecology and Management, 2021, 486, 118945.	1.4	25
10	Phosphite spray for the control of oak decline induced by Phytophthora in Europe. Forest Ecology and Management, 2021, 485, 118938.	1.4	30
11	senSCOPE: Modeling mixed canopies combining green and brown senesced leaves. Evaluation in a Mediterranean Grassland. Remote Sensing of Environment, 2021, 257, 112352.	4.6	15
12	How Nitrogen and Phosphorus Availability Change Water Use Efficiency in a Mediterranean Savanna Ecosystem. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006005.	1.3	13
13	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	2.4	29
14	The enduring effects of sowing legume-rich mixtures on the soil microbial community and soil carbon in semi-arid wood pastures. Plant and Soil, 2021, 465, 563-582.	1.8	21
15	Mixtures of forest and agroforestry alleviate trade-offs between ecosystem services in European rural landscapes. Ecosystem Services, 2021, 50, 101318.	2.3	19
16	Time for collective actions. , 2021, , 245-259.		0
17	An increase in food production in Europe could dramatically affect farmland biodiversity. Communications Earth & Environment, 2021, 2, .	2.6	22
18	SilvAdapt.Net: A Site-Based Network of Adaptive Forest Management Related to Climate Change in Spain. Forests, 2021, 12, 1807.	0.9	4

#	Article	IF	CITATIONS
19	Optimizing biodiversity gain of European agriculture through regional targeting and adaptive management of conservation tools. Biological Conservation, 2020, 241, 108384.	1.9	44
20	Changes in carbohydrates induced by drought and waterlogging in Castanea sativa. Trees - Structure and Function, 2020, 34, 579-591.	0.9	38
21	To what extent does the European common agricultural policy affect key landscape determinants of biodiversity?. Environmental Science and Policy, 2020, 114, 595-605.	2.4	17
22	Drought and heatwave impacts on semi-arid ecosystems' carbon fluxes along a precipitation gradient. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190519.	1.8	27
23	Targeted policy proposals for managing spontaneous forest expansion in the Mediterranean. Journal of Applied Ecology, 2020, 57, 2373-2380.	1.9	34
24	Automatic mapping of tree crowns in scattered-tree woodlands using low-density LiDAR data and infrared imagery. Agroforestry Systems, 2020, 94, 1989-2002.	0.9	6
25	Challenges and innovations for improving the sustainability of European agroforestry systems of high nature and cultural value: stakeholder perspectives. Sustainability Science, 2020, 15, 1301-1315.	2.5	20
26	Biometric indices of wild pistachio (Pistacia atlantica Desf.) trees under resin extraction in Western Iran. Agroforestry Systems, 2020, 94, 1977-1988.	0.9	2
27	Plantâ€available N:P alters root litter N recycling in a Mediterranean tree–grass ecosystem. Journal of Plant Nutrition and Soil Science, 2020, 183, 517-529.	1.1	Ο
28	Soil COS Exchange: A Comparison of Three European Ecosystems. Global Biogeochemical Cycles, 2020, 34, e2019GB006202.	1.9	6
29	Managing high quality timber plantations as silvopastoral systems: tree growth, soil water dynamics and nitrate leaching risk. New Forests, 2020, 51, 985-1002.	0.7	2
30	Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem. Global Change Biology, 2020, 26, 4379-4400.	4.2	27
31	Whole system valuation of arable, agroforestry and tree-only systems at three case study sites in Europe. Journal of Cleaner Production, 2020, 269, 122283.	4.6	13
32	Estimación de variables esenciales de la vegetación en un ecosistema de dehesa utilizando factores de reflectividad simulados estacionalmente. Revista De Teledeteccion, 2020, , 31.	0.6	2
33	Dry deposition of air pollutants on trees at regional scale: A case study in the Basque Country. Agricultural and Forest Meteorology, 2019, 278, 107648.	1.9	20
34	Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Scientific Reports, 2019, 9, 9547.	1.6	40
35	Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sensing of Environment, 2019, 234, 111362.	4.6	35
36	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	6.0	248

#	Article	IF	CITATIONS
37	Long-term implications of sowing legume-rich mixtures for plant diversity of Mediterranean wood pastures. Agriculture, Ecosystems and Environment, 2019, 286, 106686.	2.5	9
38	Comparison of CO ₂ and O ₂ fluxes demonstrate retention of respired CO ₂ in tree stems from a range of tree species. Biogeosciences, 2019, 16, 177-191.	1.3	20
39	Agroforestry is paying off – Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosystem Services, 2019, 36, 100896.	2.3	84
40	N : P stoichiometry and habitat effects on Mediterranean savanna seasonal root dynamics. Biogeosciences, 2019, 16, 1883-1901.	1.3	16
41	Gross Primary Productivity of Four European Ecosystems Constrained by Joint CO ₂ and COS Flux Measurements. Geophysical Research Letters, 2019, 46, 5284-5293.	1.5	38
42	Cross-site analysis of perceived ecosystem service benefits in multifunctional landscapes. Global Environmental Change, 2019, 56, 134-147.	3.6	79
43	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	3.0	364
44	Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy, 2019, 83, 581-593.	2.5	121
45	Fate of N additions in a multiple resourceâ€limited Mediterranean oak savanna. Ecosphere, 2019, 10, e02921.	1.0	3
46	Nitrogen and Phosphorus effect on Sun-Induced Fluorescence and Gross Primary Productivity in Mediterranean Grassland. Remote Sensing, 2019, 11, 2562.	1.8	19
47	Are sown legume-rich pastures effective allies for the profitability and sustainability of Mediterranean dehesas?. Agroforestry Systems, 2019, 93, 2047-2065.	0.9	20
48	Shrub encroachment and climate change increase the exposure to drought of Mediterranean wood-pastures. Science of the Total Environment, 2019, 660, 550-558.	3.9	31
49	Regulation by biotic stress of tannins biosynthesis in <i>Quercus ilex</i> : Crosstalk between defoliation and <i>Phytophthora cinnamomi</i> infection. Physiologia Plantarum, 2019, 165, 319-329.	2.6	23
50	Agroforestry practices: silvopastoralism. Burleigh Dodds Series in Agricultural Science, 2019, , 119-164.	0.1	4
51	Agroforestación: una alternativa a la forestación de tierras agrarias para la domesticación del paisaje rural. Cuadernos De La Sociedad Española De Ciencias Forestales, 2019, 45, 133-148.	0.1	Ο
52	Understanding agroforestry practices in Europe through landscape features policy promotion. Agroforestry Systems, 2018, 92, 1105-1115.	0.9	16
53	Forage-SAFE: a model for assessing the impact of tree cover on wood pasture profitability. Ecological Modelling, 2018, 372, 24-32.	1.2	16
54	Agroforestry for high value tree systems in Europe. Agroforestry Systems, 2018, 92, 945-959.	0.9	49

#	Article	IF	CITATIONS
55	A social-ecological analysis of ecosystem services supply and trade-offs in European wood-pastures. Science Advances, 2018, 4, eaar2176.	4.7	69
56	Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforestry Systems, 2018, 92, 1075-1089.	0.9	35
57	Farmers' reasoning behind the uptake of agroforestry practices: evidence from multiple case-studies across Europe. Agroforestry Systems, 2018, 92, 811-828.	0.9	61
58	Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services. Agroforestry Systems, 2018, 92, 877-891.	0.9	115
59	How local stakeholders perceive agroforestry systems: an Italian perspective. Agroforestry Systems, 2018, 92, 849-862.	0.9	23
60	How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders. Agroforestry Systems, 2018, 92, 829-848.	0.9	64
61	Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model. Agroforestry Systems, 2018, 92, 1047-1057.	0.9	18
62	Estimating leaf biomass of pollarded lebanon oak in open silvopastoral systems using allometric equations. Trees - Structure and Function, 2018, 32, 99-108.	0.9	2
63	Exploring the Role of Management in the Coproduction of Ecosystem Services from Spanish Wooded Rangelands. Rangeland Ecology and Management, 2018, 71, 549-559.	1.1	21
64	Improving the Performance of 3-D Radiative Transfer Model FLIGHT to Simulate Optical Properties of a Tree-Grass Ecosystem. Remote Sensing, 2018, 10, 2061.	1.8	24
65	Assessing the Use of Multiple Constraints and Ancillary Data to Support Scope Model Inversion in a Experimental Grassland. , 2018, , .		0
66	Estimating Leaf and Canopy Biochemistry Variables in Mediterranean Holm OAK (Quercus ILEX) from Proximal and Airborne Hyperspectral Data. , 2018, , .		0
67	Following the Turnover of Soil Bioavailable Phosphate in Mediterranean Savanna by Oxygen Stable Isotopes. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1850-1862.	1.3	17
68	Winter cereal production in a Mediterranean silvoarable walnut system in the face of climate change. Agriculture, Ecosystems and Environment, 2018, 264, 111-118.	2.5	41
69	Agroforestry in the European common agricultural policy. Agroforestry Systems, 2018, 92, 1117-1127.	0.9	24
70	Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy, 2018, 78, 603-613.	2.5	79
71	Drivers of spatio-temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem. Agricultural and Forest Meteorology, 2018, 262, 258-278.	1.9	50
72	Using Near-Infrared-Enabled Digital Repeat Photography to Track Structural and Physiological Phenology in Mediterranean Tree–Grass Ecosystems. Remote Sensing, 2018, 10, 1293.	1.8	64

#	Article	IF	CITATIONS
73	Intereses e innovaciones para la Dehesa identificados por los agentes interesados. Cuadernos De La Sociedad Española De Ciencias Forestales, 2018, 44, .	0.1	0
74	Respuesta a la clara del nogal hÃbrido y al desmoche del cerezo en plantaciones intensivas del norte de CÃ _i ceres, Extremadura, e implicaciones para los sistemas agroforestales. Cuadernos De La Sociedad Española De Ciencias Forestales, 2018, 44, .	0.1	0
75	Presentación y objetivos de la Asociación Agroforestal Española (AGFE). Cuadernos De La Sociedad Española De Ciencias Forestales, 2018, 44, .	0.1	0
76	Técnicas alternativas de manejo de plantaciones de producción de madera de calidad en régimen intensivo. Cuadernos De La Sociedad Española De Ciencias Forestales, 2018, 44, .	0.1	0
77	How do management techniques affect carbon stock in intensive hardwood plantations?. Forest Ecology and Management, 2017, 389, 228-239.	1.4	14
78	Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem. Agricultural and Forest Meteorology, 2017, 236, 87-99.	1.9	60
79	European farm scale habitat descriptors for the evaluation of biodiversity. Ecological Indicators, 2017, 77, 205-217.	2.6	16
80	Plant functional traits and canopy structure control the relationship between photosynthetic <scp>CO</scp> ₂ uptake and farâ€red sunâ€induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytologist, 2017, 214, 1078-1091.	3.5	158
81	Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems and Environment, 2017, 241, 121-132.	2.5	148
82	Stakeholder perspectives of wood-pasture ecosystem services: A case study from Iberian dehesas. Land Use Policy, 2017, 60, 324-333.	2.5	83
83	Unusually limited pollen dispersal and connectivity of <scp>P</scp> edunculate oak (<i>Quercus) Tj ETQq1 1 0.78 3319-3331.</i>	4314 rgBT 2.0	Г /Overloc <mark>k</mark> 37
84	EDITOR'S CHOICE: How much would it cost to monitor farmland biodiversity in Europe?. Journal of Applied Ecology, 2016, 53, 140-149.	1.9	21
85	Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions. Ecology, 2016, 97, 1625-1625.	1.5	15
86	Taxonomic and functional diversity in Mediterranean pastures: insights on the biodiversity–productivity tradeâ€off. Journal of Applied Ecology, 2016, 53, 1575-1584.	1.9	21
87	Grasslands in â€~Old World' and â€~New World' Mediterraneanâ€elimate zones: past trends, current statu and future research priorities. Grass and Forage Science, 2016, 71, 1-35.	^{IS} 1.2	91
88	Assessing linkages between ecosystem services, land-use and well-being in an agroforestry landscape using public participation GIS. Applied Geography, 2016, 74, 30-46.	1.7	101
89	Genetic determination of tannins and herbivore resistance in Quercus ilex. Tree Genetics and Genomes, 2016, 12, 1.	0.6	21
90	Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems and Environment, 2016, 230, 150-161.	2.5	365

#	Article	IF	CITATIONS
91	Exploring the causes of high biodiversity of Iberian dehesas: the importance of wood pastures and marginal habitats. Agroforestry Systems, 2016, 90, 87-105.	0.9	62
92	The efficiency of earthworm extraction methods is determined by species and soil properties in the Mediterranean communities of Central-Western Spain. European Journal of Soil Biology, 2016, 73, 59-68.	1.4	19
93	Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem. Biogeosciences, 2015, 12, 6351-6367.	1.3	65
94	Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biological Conservation, 2015, 190, 70-79.	1.9	228
95	Microhabitat effects on herbaceous nutrient concentrations at the community and species level in <scp>M</scp> editerranean open woodlands: the role of species composition. Grass and Forage Science, 2015, 70, 219-228.	1.2	11
96	Shrub encroachment of Iberian dehesas: implications on total forage productivity. Agroforestry Systems, 2015, 89, 587-598.	0.9	21
97	Seasonal variations of ectomycorrhizal communities in declining Quercus ilex forests: interactions with topography, tree health status and Phytophthora cinnamomi infections. Forestry, 2015, 88, 257-266.	1.2	31
98	Indicators for the on-farm assessment of crop cultivar and livestock breed diversity: a survey-based participatory approach. Biodiversity and Conservation, 2014, 23, 3051-3071.	1.2	19
99	Gains to species diversity in organically farmed fields are not propagated at the farm level. Nature Communications, 2014, 5, 4151.	5.8	89
100	Resource manipulation reveals flexible allocation rules to growth and reproduction in a Mediterranean evergreen oak. Journal of Plant Ecology, 2014, 7, 77-85.	1.2	24
101	Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. Forest Ecology and Management, 2014, 324, 72-80.	1.4	44
102	Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi. Agricultural and Forest Meteorology, 2014, 192-193, 1-8.	1.9	79
103	Estimating the cost of different strategies for measuring farmland biodiversity: Evidence from a Europe-wide field evaluation. Ecological Indicators, 2014, 45, 434-443.	2.6	21
104	Combined effects of soil properties and Phytophthora cinnamomi infections on Quercus ilex decline. Plant and Soil, 2013, 373, 403-413.	1.8	46
105	A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agriculture, Ecosystems and Environment, 2013, 165, 74-79.	2.5	45
106	Facilitation of holm oak recruitment through two contrasted shrubs species in <scp>M</scp> editerranean grazed woodlands. Journal of Vegetation Science, 2013, 24, 344-355.	1.1	45
107	The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. Journal of Arid Environments, 2013, 91, 22-30.	1.2	28
108	Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agricultural and Forest Meteorology, 2013, 169, 92-99.	1.9	69

#	Article	IF	CITATIONS
109	Overstory–Understory Relationships. Landscape Series, 2013, , 145-179.	0.1	17
110	Shrubs affect soil nutrients availability with contrasting consequences for pasture understory and tree overstory production and nutrient status in Mediterranean grazed open woodlands. Nutrient Cycling in Agroecosystems, 2012, 93, 89-102.	1.1	38
111	Interspecific competition induces asymmetrical rooting profile adjustments in shrub-encroached open oak woodlands. Trees - Structure and Function, 2012, 26, 997-1006.	0.9	43
112	Root system of Quercus suber L. seedlings in response to herbaceous competition and different watering and fertilisation regimes. Agroforestry Systems, 2012, 85, 205-214.	0.9	25
113	Past, Present and Future of Agroforestry Systems in Europe. Advances in Agroforestry, 2012, , 285-312.	0.8	55
114	Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain. Journal of Environmental Monitoring, 2011, 13, 1897.	2.1	83
115	Shrub species affect distinctively the functioning of scattered Quercus ilex trees in Mediterranean open woodlands. Forest Ecology and Management, 2011, 261, 1750-1759.	1.4	36
116	Trees' Role in Nitrogen Leaching after Organic, Mineral Fertilization: A Greenhouse Experiment. Journal of Environmental Quality, 2011, 40, 853-859.	1.0	19
117	Shrub encroachment in Mediterranean silvopastoral systems: Retama sphaerocarpa and Cistus ladanifer induce contrasting effects on pasture and Quercus ilex production. Agriculture, Ecosystems and Environment, 2011, 141, 447-454.	2.5	67
118	Belowground competition for nutrients in shrub-encroached Mediterranean dehesas. Nutrient Cycling in Agroecosystems, 2011, 90, 347-354.	1.1	10
119	Hydrology and Biogeochemistry of Mediterranean Forests. Ecological Studies, 2011, , 301-319.	0.4	9
120	Large-Scale Patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica Regeneration in Central-Western Spain. Ecosystems, 2010, 13, 644-660.	1.6	99
121	Multiple pathways for tree regeneration in anthropogenic savannas: incorporating biotic and abiotic drivers into management schemes. Journal of Applied Ecology, 2010, 47, 1272-1281.	1.9	73
122	How Mediterranean Deciduous Trees Cope with Long Summer Drought? The Case of Quercus pyrenaica Forests in Western Spain. Ecological Studies, 2010, , 187-201.	0.4	2
123	Evaluating potassium phosphonate injections for the control of Quercus ilex decline in SW Spain: implications of low soil contamination by Phytophthora cinnamomi and low soil water content on the effectiveness of treatments. Phytoparasitica, 2009, 37, 303-316.	0.6	25
124	Quercus ilex root growth in response to heterogeneous conditions of soil bulk density and soil NH4-N content. Soil and Tillage Research, 2009, 103, 16-22.	2.6	38
125	Farmer Perceptions of Silvoarable Systems in Seven European Countries. Advances in Agroforestry, 2009, , 67-86.	0.8	25
126	The Functioning, Management and Persistence of Dehesas. Advances in Agroforestry, 2009, , 127-160.	0.8	72

#	Article	IF	CITATIONS
127	Light distribution in scattered-trees open woodlands in Western Spain. Agroforestry Systems, 2008, 73, 233-244.	0.9	19
128	Response of understorey forage to multiple tree effects in Iberian dehesas. Agriculture, Ecosystems and Environment, 2008, 123, 239-244.	2.5	69
129	Tertiary relict trees in a Mediterranean climate: abiotic constraints on the persistence of <i>Prunus lusitanica</i> at the eroding edge of its range. Journal of Biogeography, 2008, 35, 1425-1435.	1.4	35
130	Impact of stand density on water status and leaf gas exchange in Quercus ilex. Forest Ecology and Management, 2008, 254, 74-84.	1.4	91
131	Effect of land-use on soil water dynamic in dehesas of Central–Western Spain. Catena, 2007, 71, 298-308.	2.2	59
132	Hydrogeochemical balance of forest umbrisol profiles (â€~Sierra de Gata', central western Spain). Hydrological Processes, 2007, 21, 1949-1956.	1.1	0
133	Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecological Engineering, 2007, 29, 434-449.	1.6	126
134	Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agriculture, Ecosystems and Environment, 2007, 119, 270-280.	2.5	89
135	Modeling environmental benefits of silvoarable agroforestry in Europe. Agriculture, Ecosystems and Environment, 2007, 119, 320-334.	2.5	116
136	Effect of singleQuercus ilextrees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Annals of Forest Science, 2007, 64, 355-364.	0.8	76
137	Effects of trees and understorey management on soil fertility and nutritional status of holm oaks in Spanish dehesas. Nutrient Cycling in Agroecosystems, 2007, 78, 253-264.	1.1	52
138	Driving competitive and facilitative interactions in oak dehesas through management practices. Agroforestry Systems, 2007, 70, 25-40.	0.9	96
139	Silvoarable Systems in Europe – Past, Present and Future Prospects. Agroforestry Systems, 2006, 67, 29-50.	0.9	302
140	Fine Root Distribution in Dehesas of Central-Western Spain. Plant and Soil, 2005, 277, 153-162.	1.8	149
141	Comparison of soil water-contents as measured with a neutron probe and time domain reflectometry in a Mediterranean forest (?Sierra de Gata?, Central Western Spain). Annals of Forest Science, 2003, 60, 185-193.	0.8	10
142	Sulphur balance in a broadleaf, non-polluted, forest ecosystem (central-western Spain). Forest Ecology and Management, 2002, 161, 205-214.	1.4	23
143	Atmospheric deposition in oligotrophic Quercus pyrenaica forests: implications for forest nutrition. Forest Ecology and Management, 2002, 171, 17-29.	1.4	23
144	Title is missing!. Plant and Soil, 2002, 243, 11-22.	1.8	14

#	Article	IF	CITATIONS
145	Canopy modification of atmospheric deposition in oligotrophic Quercus pyrenaica forests of an unpolluted region (central-western Spain). Forest Ecology and Management, 2001, 149, 47-60.	1.4	45
146	Effects of disturbance caused by traditional Spanish rural land use on the regeneration of Cytisus multiflorus. Applied Vegetation Science, 1999, 2, 239-250.	0.9	11
147	Nutrient efficiency and resorption in Quercus pyrenaica oak coppices under different rainfall regimes of the Sierra de Gata mountains (central western Spain). Annales Des Sciences Forestières, 1999, 56, 321-331.	1.1	15
148	Nutrient cycling in deciduous forest ecosystems of the Sierra de Gata mountains: nutrient supplies to the soil through both litter and throughfall. Annales Des Sciences Forestières, 1998, 55, 771-784.	1.1	24
149	Soil water budget in fourQuercus pyrenaicaforests across a rainfall gradient. Arid Land Research and Management, 1996, 10, 65-84.	0.3	14
150	Stomatal response of Quercus pyrenaica Willd to environmental factors in two sites differing in their annual rainfall (Sierra de Gata, Spain). Annales Des Sciences Forestières, 1996, 53, 221-234.	1.1	19
151	Water and bioelement fluxes in four Quercus pyrenaica forests along a pluviometric gradient. Annales Des Sciences Forestières, 1996, 53, 625-639.	1.1	19
152	Soil solution composition in forest soils of sierra de gata mountains, Centralâ€Western Spain: Relationship with soil water content. Arid Land Research and Management, 1995, 9, 495-502.	0.3	14
153	Leaf water potential and stomatal conductance in Quercus pyrenaica Willd. forests: vertical gradients and response to environmental factors. Tree Physiology, 1994, 14, 1039-1047.	1.4	38