List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1462425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene regulation in time and space during X-chromosome inactivation. Nature Reviews Molecular Cell Biology, 2022, 23, 231-249.	16.1	86
2	Molecular biology for green recovery—A call for action. PLoS Biology, 2022, 20, e3001623.	2.6	5
3	Inversion of a topological domain leads to restricted changes in its gene expression and affects interdomain communication. Development (Cambridge), 2022, 149, .	1.2	10
4	XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell, 2022, 185, 2164-2183.e25.	13.5	22
5	Priorities for ocean microbiome research. Nature Microbiology, 2022, 7, 937-947.	5.9	27
6	H4K20me1 and H3K27me3 are concurrently loaded onto the inactive X chromosome but dispensable for inducing gene silencing. EMBO Reports, 2021, 22, e51989.	2.0	40
7	The X Chromosome from Telomere to Telomere: Key Achievements and Future Opportunities. Faculty Reviews, 2021, 10, 63.	1.7	1
8	The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harbor Perspectives in Biology, 2021, , a040196.	2.3	19
9	Locus specific epigenetic modalities of random allelic expression imbalance. Nature Communications, 2021, 12, 5330.	5.8	7
10	Mapping of Chromosome by 3D-Chromosome Painting During Early Mouse Development. Methods in Molecular Biology, 2021, 2214, 175-187.	0.4	1
11	Xist nucleates local protein gradients to propagate silencing across the X chromosome. Cell, 2021, 184, 6174-6192.e32.	13.5	62
12	Bioinformatic Analysis of Single-Cell Hi-C Data from Early Mouse Embryo. Methods in Molecular Biology, 2021, 2214, 295-316.	0.4	0
13	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	1.8	13
14	Digging into X chromosome inactivation. Science, 2021, 374, 942-943.	6.0	4
15	SPEN is required for Xist upregulation during initiation of X chromosome inactivation. Nature Communications, 2021, 12, 7000.	5.8	16
16	A Conserved Noncoding Locus Regulates Random Monoallelic Xist Expression across a Topological Boundary. Molecular Cell, 2020, 77, 352-367.e8.	4.5	48
17	Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature, 2020, 580, 142-146.	13.7	116
18	Molecular Mechanisms of Facultative Heterochromatin Formation: An X-Chromosome Perspective. Annual Review of Biochemistry, 2020, 89, 255-282.	5.0	51

#	Article	IF	CITATIONS
19	SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature, 2020, 578, 455-460.	13.7	146
20	Advances in epigenetics link genetics to the environment and disease. Nature, 2019, 571, 489-499.	13.7	863
21	The role of <i>Xist</i> â€mediated Polycomb recruitment in the initiation of Xâ€chromosome inactivation. EMBO Reports, 2019, 20, e48019.	2.0	79
22	Xist RNA in action: Past, present, and future. PLoS Genetics, 2019, 15, e1008333.	1.5	160
23	The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nature Genetics, 2019, 51, 1024-1034.	9.4	60
24	Kinetics of <i>Xist</i> -induced gene silencing can be predicted from combinations of epigenetic and genomic features. Genome Research, 2019, 29, 1087-1099.	2.4	38
25	A symmetric toggle switch explains the onset of random X inactivation in different mammals. Nature Structural and Molecular Biology, 2019, 26, 350-360.	3.6	36
26	Voices in methods development. Nature Methods, 2019, 16, 945-951.	9.0	5
27	In-cell identification and measurement of RNA-protein interactions. Nature Communications, 2019, 10, 5317.	5.8	43
28	The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell, 2019, 176, 182-197.e23.	13.5	207
29	The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nature Communications, 2019, 10, 30.	5.8	87
30	Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determinants during initiation of random X-inactivation. Nature Genetics, 2019, 51, 285-295.	9.4	32
31	The Ftx Noncoding Locus Controls X Chromosome Inactivation Independently of Its RNA Products. Molecular Cell, 2018, 70, 462-472.e8.	4.5	75
32	Challenges and guidelines toward 4D nucleome data and model standards. Nature Genetics, 2018, 50, 1352-1358.	9.4	47
33	X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annual Review of Genetics, 2018, 52, 535-566.	3.2	192
34	Live Imaging of Xist RNA. Methods in Molecular Biology, 2018, 1861, 67-72.	0.4	5
35	Effective normalization for copy number variation in Hi-C data. BMC Bioinformatics, 2018, 19, 313.	1.2	27
36	Transcriptome Profiling of Single Mouse Oocytes. Methods in Molecular Biology, 2018, 1818, 51-65.	0.4	2

#	Article	IF	CITATIONS
37	Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells. Nature Genetics, 2017, 49, 377-386.	9.4	76
38	Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nature Structural and Molecular Biology, 2017, 24, 226-233.	3.6	122
39	Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nature Structural and Molecular Biology, 2017, 24, 197-204.	3.6	114
40	RNA FISH to Study Zygotic Genome Activation in Early Mouse Embryos. Methods in Molecular Biology, 2017, 1605, 133-145.	0.4	4
41	XACT Noncoding RNA Competes with XIST in the Control of X Chromosome Activity during Human Early Development. Cell Stem Cell, 2017, 20, 102-111.	5.2	181
42	Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations. Nature Communications, 2017, 8, 690.	5.8	50
43	Contribution of epigenetic landscapes and transcription factors to X-chromosome reactivation in the inner cell mass. Nature Communications, 2017, 8, 1297.	5.8	52
44	Preface. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160353.	1.8	0
45	Topologically Associating Domains in Chromosome Architecture and Gene Regulatory Landscapes during Development, Disease, and Evolution. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 267-278.	2.0	28
46	From Chromosome Conformation Capture to Polymer Physics and Back. , 2017, , 203-224.		0
47	X chromosome inactivation: new players in the initiation of gene silencing. F1000Research, 2017, 6, 344.	0.8	34
48	Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. ELife, 2016, 5, .	2.8	107
49	Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nature Communications, 2016, 7, 13661.	5.8	207
50	Structural Fluctuations of the Chromatin Fiber within Topologically Associating Domains. Biophysical Journal, 2016, 110, 1234-1245.	0.2	58
51	Random monoallelic expression of genes on autosomes: Parallels with X-chromosome inactivation. Seminars in Cell and Developmental Biology, 2016, 56, 100-110.	2.3	44
52	Genomes of <i>Ellobius</i> species provide insight into the evolutionary dynamics of mammalian sex chromosomes. Genome Research, 2016, 26, 1202-1210.	2.4	37
53	LINE-1 Activity in Facultative Heterochromatin Formation during X Chromosome Inactivation. Cell, 2016, 166, 782.	13.5	5
54	3D solutions to complex gene regulation. Nature Reviews Molecular Cell Biology, 2016, 17, 739-739.	16.1	1

#	Article	IF	CITATIONS
55	Structural organization of the inactive X chromosome in the mouse. Nature, 2016, 535, 575-579.	13.7	369
56	Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nature Communications, 2016, 7, 12354.	5.8	19
57	Closing the loop: 3C versus DNA FISH. Genome Biology, 2016, 17, 215.	3.8	101
58	Transcriptional Analysis by Nascent RNA FISH of In Vivo Trophoblast Giant Cells or In Vitro Short-term Cultures of Ectoplacental Cone Explants. Journal of Visualized Experiments, 2016, , .	0.2	1
59	Efficient and versatile CRISPR engineering of human neurons in culture to model neurological disorders. Wellcome Open Research, 2016, 1, 13.	0.9	38
60	The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Research, 2015, 25, 488-503.	2.4	106
61	Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation. Molecular Cell, 2015, 57, 769-783.	4.5	229
62	X-chromosome inactivation: new insights into cis and trans regulation. Current Opinion in Genetics and Development, 2015, 31, 57-66.	1.5	131
63	HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biology, 2015, 16, 259.	3.8	1,632
64	Systematic Discovery of Xist RNA Binding Proteins. Cell, 2015, 161, 404-416.	13.5	886
65	Structural and functional diversity of Topologically Associating Domains. FEBS Letters, 2015, 589, 2877-2884.	1.3	269
66	High-Resolution 3D DNA FISH Using Plasmid Probes and Computational Correction of Optical Aberrations to Study Chromatin Structure at the Sub-megabase Scale. Methods in Molecular Biology, 2015, 1262, 37-53.	0.4	9
67	Developmental Dynamics and Disease Potential of Random Monoallelic Gene Expression. Developmental Cell, 2014, 28, 366-380.	3.1	118
68	Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell, 2014, 157, 95-109.	13.5	1,393
69	Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription. Cell, 2014, 157, 950-963.	13.5	411
70	Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Molecular Cell, 2014, 53, 301-316.	4.5	221
71	Noncoding RNAs and Epigenetic Mechanisms During X-Chromosome Inactivation. Annual Review of Cell and Developmental Biology, 2014, 30, 561-580.	4.0	195
72	Xâ€chromosome inactivation in development and cancer. FEBS Letters, 2014, 588, 2514-2522.	1.3	118

#	Article	IF	CITATIONS
73	The Two Active X Chromosomes in Female ESCs Block Exit from the Pluripotent State by Modulating the ESC Signaling Network. Cell Stem Cell, 2014, 14, 203-216.	5.2	149
74	MOF-associated complexes ensure stem cell identity and Xist repression. ELife, 2014, 3, e02024.	2.8	76
75	The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature, 2013, 501, 227-231.	13.7	236
76	Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods?. BioEssays, 2013, 35, 818-828.	1.2	158
77	Role and control of X chromosome dosage in mammalian development. Current Opinion in Genetics and Development, 2013, 23, 109-115.	1.5	72
78	Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Research, 2013, 23, 2066-2077.	2.4	282
79	Changes in the organization of the genome during the mammalian cell cycle. Genome Biology, 2013, 14, 142.	13.9	8
80	Cell nucleus. Current Opinion in Cell Biology, 2013, 25, 279-280.	2.6	0
81	Unusual chromatin status and organization of the inactive X chromosome in murine trophoblast giant cells. Development (Cambridge), 2013, 140, 861-872.	1.2	45
82	Small RNAs derived from structural non-coding RNAs. Methods, 2013, 63, 76-84.	1.9	39
83	Epigenetic Functions of Smchd1 Repress Gene Clusters on the Inactive X Chromosome and on Autosomes. Molecular and Cellular Biology, 2013, 33, 3150-3165.	1.1	99
84	RNAi-Dependent and Independent Control of LINE1 Accumulation and Mobility in Mouse Embryonic Stem Cells. PLoS Genetics, 2013, 9, e1003791.	1.5	37
85	Live-Cell Imaging Combined with Immunofluorescence, RNA, or DNA FISH to Study the Nuclear Dynamics and Expression of the X-Inactivation Center. Methods in Molecular Biology, 2013, 1042, 13-31.	0.4	9
86	Initiation de l'inactivation du chromosome X durant le développement embryonnaire précoce chez la souris et l'humain. Bulletin De L'Academie Nationale De Medecine, 2013, 197, 609-617.	0.0	1
87	ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics, 2012, 28, 3147-3149.	1.8	91
88	HiTC: exploration of high-throughput â€~C' experiments. Bioinformatics, 2012, 28, 2843-2844.	1.8	165
89	MicroRNA Regulation of Cbx7 Mediates a Switch of Polycomb Orthologs during ESC Differentiation. Cell Stem Cell, 2012, 10, 33-46.	5.2	191
90	Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. Rna, 2012, 18, 253-264.	1.6	84

#	Article	IF	CITATIONS
91	Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome. Developmental Cell, 2012, 23, 265-279.	3.1	160
92	Recent advances in X-chromosome inactivation research. Current Opinion in Cell Biology, 2012, 24, 825-832.	2.6	53
93	Deep-Sequencing Protocols Influence the Results Obtained in Small-RNA Sequencing. PLoS ONE, 2012, 7, e32724.	1.1	31
94	Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012, 485, 381-385.	13.7	2,595
95	Live-Cell Chromosome Dynamics and Outcome of X Chromosome Pairing Events during ES Cell Differentiation. Cell, 2011, 145, 447-458.	13.5	137
96	Deterministic and Stochastic Allele Specific Gene Expression in Single Mouse Blastomeres. PLoS ONE, 2011, 6, e21208.	1.1	134
97	Regulation of X-chromosome inactivation by the X-inactivation centre. Nature Reviews Genetics, 2011, 12, 429-442.	7.7	312
98	Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature, 2011, 472, 370-374.	13.7	394
99	Fifty years of X-inactivation research. Development (Cambridge), 2011, 138, 5049-5055.	1.2	73
100	Evolutionary diversity and developmental regulation of X-chromosome inactivation. Human Genetics, 2011, 130, 307-327.	1.8	87
101	The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes and Development, 2011, 25, 1371-1383.	2.7	278
102	Function of the Sex Chromosomes in Mammalian Fertility. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002675-a002675.	2.3	60
103	Rnf12—A Jack of All Trades in X Inactivation?. PLoS Genetics, 2011, 7, e1002002.	1.5	3
104	Ten years of genetics and genomics: what have we achieved and where are we heading?. Nature Reviews Genetics, 2010, 11, 723-733.	7.7	65
105	Nuclear Organization and Dosage Compensation. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000604-a000604.	2.3	25
106	Dynamic plasticity of large-scale chromatin structure revealed by self-assembly of engineered chromosome regions. Journal of Cell Biology, 2010, 190, 761-776.	2.3	32
107	girafe – an R/Bioconductor package for functional exploration of aligned next-generation sequencing reads. Bioinformatics, 2010, 26, 2902-2903.	1.8	12
108	LINE-1 Activity in Facultative Heterochromatin Formation during X Chromosome Inactivation. Cell, 2010, 141, 956-969.	13.5	296

#	Article	IF	CITATIONS
109	Epigenetic mechanisms in development and disease. Seminars in Cell and Developmental Biology, 2010, 21, 185-185.	2.3	0
110	Monomethylation of Histone H4-Lysine 20 Is Involved in Chromosome Structure and Stability and Is Essential for Mouse Development. Molecular and Cellular Biology, 2009, 29, 2278-2295.	1.1	271
111	Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5198-5203.	3.3	152
112	Highly Dynamic and Sex-Specific Expression of microRNAs During Early ES Cell Differentiation. PLoS Genetics, 2009, 5, e1000620.	1.5	73
113	X inactivation and the complexities of silencing a sex chromosome. Current Opinion in Cell Biology, 2009, 21, 359-366.	2.6	192
114	Lessons from comparative analysis of X-chromosome inactivation in mammals. Chromosome Research, 2009, 17, 659-669.	1.0	59
115	Foreword: Coping with sex chromosome imbalance. Chromosome Research, 2009, 17, 579-583.	1.0	13
116	X Chromosome Inactivation: When Dosage Counts. Cell, 2009, 139, 865-867.	13.5	7
117	05-P007 X chromosome inactivation in murine extraembryonic development at post-implantation stages. Mechanisms of Development, 2009, 126, S114.	1.7	0
118	S05-04. Evolutionary diversity and developmental dynamics of X-chromosome inactivation. Mechanisms of Development, 2009, 126, S7.	1.7	0
119	High-resolution analysis of epigenetic changes associated with X inactivation. Genome Research, 2009, 19, 1361-1373.	2.4	122
120	Chromosome Structural Proteins and RNA-Mediated Epigenetic Silencing. Developmental Cell, 2008, 14, 813-814.	3.1	5
121	Nonrigid Registration of 3-D Multichannel Microscopy Images of Cell Nuclei. IEEE Transactions on Image Processing, 2008, 17, 493-499.	6.0	40
122	A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1533-1538.	3.3	51
123	Combined Immunofluorescence, RNA Fluorescent In Situ Hybridization, and DNA Fluorescent In Situ Hybridization to Study Chromatin Changes, Transcriptional Activity, Nuclear Organization, and X-Chromosome Inactivation. Methods in Molecular Biology, 2008, 463, 297-308.	0.4	113
124	X Inactive–Specific Transcript RNA Coating and Genetic Instability of the X Chromosome in BRCA1 Breast Tumors. Cancer Research, 2007, 67, 5134-5140.	0.4	95
125	The ins and outs of gene regulation and chromosome territory organisation. Current Opinion in Cell Biology, 2007, 19, 311-316.	2.6	125
126	Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes and Development, 2006, 20, 1848-1867.	2.7	439

#	Article	IF	CITATIONS
127	Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nature Cell Biology, 2006, 8, 293-299.	4.6	304
128	Mouse Polycomb Proteins Bind Differentially to Methylated Histone H3 and RNA and Are Enriched in Facultative Heterochromatin. Molecular and Cellular Biology, 2006, 26, 2560-2569.	1.1	462
129	A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes and Development, 2006, 20, 2223-2237.	2.7	442
130	Non-rigid Registration of 3D Multi-channel Microscopy Images of Cell Nuclei. Lecture Notes in Computer Science, 2006, 9, 907-914.	1.0	6
131	Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. EMBO Reports, 2005, 6, 748-754.	2.0	52
132	Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature, 2005, 438, 369-373.	13.7	177
133	Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development (Cambridge), 2005, 132, 1649-1661.	1.2	352
134	Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Current Opinion in Genetics and Development, 2005, 15, 482-489.	1.5	175
135	Differential Histone H3 Lys-9 and Lys-27 Methylation Profiles on the X Chromosome. Molecular and Cellular Biology, 2004, 24, 5475-5484.	1.1	194
136	Recent advances in X-chromosome inactivation. Current Opinion in Cell Biology, 2004, 16, 247-255.	2.6	253
137	Epigenetic Dynamics of Imprinted X Inactivation During Early Mouse Development. Science, 2004, 303, 644-649.	6.0	736
138	Mammalian X-Chromosome Inactivation: An Epigenetics Paradigm. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 89-102.	2.0	32
139	X-Chromosome Inactivation in Mouse Embryonic Stem Cells: Analysis of Histone Modifications and Transcriptional Activity Using Immunofluorescence and FISH. Methods in Enzymology, 2003, 376, 405-419.	0.4	43
140	Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell, 2003, 113, 703-716.	13.5	1,991
141	Role of Histone Methyltransferase G9a in CpG Methylation of the Prader-Willi Syndrome Imprinting Center. Journal of Biological Chemistry, 2003, 278, 14996-15000.	1.6	149
142	Antisense RNA in imprinting: spreading silence through Air. Trends in Genetics, 2002, 18, 434-437.	2.9	79
143	Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genetics, 2002, 30, 73-76.	9.4	343
144	Relationship of XIST expression and responses of ovarian cancer to chemotherapy. Molecular Cancer Therapeutics, 2002, 1, 769-76.	1.9	92

9

#	Article	IF	CITATIONS
145	Methylation of Histone H3 at Lys-9 Is an Early Mark on the X Chromosome during X Inactivation. Cell, 2001, 107, 727-738.	13.5	471
146	X-chromosome inactivation: counting, choice and initiation. Nature Reviews Genetics, 2001, 2, 59-67.	7.7	616
147	Anti-Xistentialism. Nature Genetics, 1999, 21, 343-344.	9.4	16
148	A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation. EMBO Journal, 1999, 18, 2897-2907.	3.5	67
149	<i>Xist</i> Yeast Artificial Chromosome Transgenes Function as X-Inactivation Centers Only in Multicopy Arrays and Not as Single Copies. Molecular and Cellular Biology, 1999, 19, 3156-3166.	1.1	130
150	Cloning and Localization of the MurineXpctGene: Evidence for Complex Rearrangements during the Evolution of the Region around theXistGene. Genomics, 1998, 48, 296-303.	1.3	23
151	Molecular correlates of the murine Xce locus. Genetical Research, 1998, 72, 217-224.	0.3	27
152	X-CHROMOSOME INACTIVATION IN MAMMALS. Annual Review of Genetics, 1997, 31, 571-610.	3.2	485
153	Localization and expression analysis of a novel conserved brain expressed transcript, Brx /BRX, lying within the Xic/XIC candidate region. Mammalian Genome, 1997, 8, 760-766.	1.0	21
154	[25]Selected methods related to the mouse as a model system. Methods in Molecular Genetics, 1996, 8, 439-469.	0.6	2
155	Insertion of unique sites into YAC arms for rapid physical analysis following YAC transfer into mammalian cells. Nucleic Acids Research, 1995, 23, 4011-4012.	6.5	17
156	Creation of a deletion series of mouse YACs covering a 500 kb region aroundXist. Nucleic Acids Research, 1994, 22, 1830-1837.	6.5	23
157	Physical Mapping and YAC Contig Analysis of the Region Surrounding Xist on the Mouse X Chromosome. Genomics, 1993, 15, 559-569.	1.3	33
158	A large inverted duplicated DNA region associated with an amplified oncogene is stably maintained in a YAC. Human Molecular Genetics, 1993, 2, 133-138.	1.4	9
159	The role of inverted duplication in the generation of gene amplification in mammalian cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 143-155.	2.4	46
160	The use of 5-azacytidine to increase cleavage of methylation sensitive rare cutting restriction enzymes sites in amplified DNA. Nucleic Acids Research, 1990, 18, 6147-6148.	6.5	4
161	An improved method for the screening of YAC libraries. Nucleic Acids Research, 1989, 17, 5861-5861.	6.5	28
162	Loss of <i>XIST</i> Impairs Human Mammary Stem Cell Differentiation and Increases Tumorigenicity Through Enhancer and Mediator Complex Hyperactivation. SSRN Electronic Journal, 0, , .	0.4	1