Kent M Daane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1462167/publications.pdf

Version: 2024-02-01

215 papers 7,608 citations

44 h-index

57631

72 g-index

218 all docs

218 docs citations

218 times ranked 3944 citing authors

#	Article	IF	CITATIONS
1	A Coordinated Sampling and Identification Methodology for Larval Parasitoids of Spotted-Wing Drosophila. Journal of Economic Entomology, 2022, 115, 922-942.	0.8	25
2	Evaluation of egg parasitoid Hadronotus pennsylvanicus as a prospective biocontrol agent of the leaffooted bug Leptoglossus zonatus. BioControl, 2022, 67, 123-133.	0.9	3
3	Comparative Life History Parameters of Three Stink Bug Pest Species. Environmental Entomology, 2022, 51, 430-439.	0.7	1
4	Releases of the parasitoid Pachycrepoideus vindemmiae for augmentative biological control of spotted wing drosophila, Drosophila suzukii. Biological Control, 2022, 168, 104865.	1.4	13
5	Winter Cover Crops Reduce Spring Emergence and Egg Deposition of Overwintering Navel Orangeworm (Lepidoptera: Pyralidae) in Almonds. Environmental Entomology, 2022, 51, 790-797.	0.7	1
6	Host preference of three Asian larval parasitoids to closely related Drosophila species: implications for biological control of Drosophila suzukii. Journal of Pest Science, 2021, 94, 273-283.	1.9	28
7	Assessment of Asobara japonica as a potential biological control agent for the spotted wing drosophila, Drosophila suzukii. Entomologia Generalis, 2021, 41, 1-12.	1.1	12
8	Givira ethela (Neumoegen and Dyar, 1893) (Lepidoptera: Cossidae), A Previously Unidentified Pest on Vitis vinifera (L.). Insects, 2021, 12, 239.	1.0	7
9	Exploration for olive fruit fly parasitoids across Africa reveals regional distributions and dominance of closely associated parasitoids. Scientific Reports, 2021, 11, 6182.	1.6	7
10	Potential host ranges of three Asian larval parasitoids of Drosophila suzukii. Journal of Pest Science, 2021, 94, 1171-1182.	1.9	28
11	DROP: Molecular voucher database for identification of <i>Drosophila</i> parasitoids. Molecular Ecology Resources, 2021, 21, 2437-2454.	2.2	16
12	Use of Ground Covers to Control Three-Cornered Alfalfa Hopper, <i>Spissistilus festinus</i> (Hemiptera: Membracidae), and Other Suspected Vectors of Grapevine Red Blotch Virus. Journal of Economic Entomology, 2021, 114, 1462-1469.	0.8	5
13	Development of DNA Melt Curve Analysis for the Identification of Lepidopteran Pests in Almonds and Pistachios. Insects, 2021, 12, 553.	1.0	1
14	Field Survival of the Brown Marmorated Stink Bug <i>Halyomorpha halys</i> (Hemiptera:) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50 222 Td
15	<i>Drosophila suzukii</i> (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. Journal of Economic Entomology, 2021, 114, 1950-1974.	0.8	113
16	Irrigated trap crops impact key hemipteran pests in organic pistachio orchard. Arthropod-Plant Interactions, 2021, 15, 949-959.	0.5	5
17	Areawide mating disruption for vine mealybug in California vineyards. Crop Protection, 2021, 148, 105735.	1.0	5
18	Winter cover crops and no-till promote soil macrofauna communities in irrigated, Mediterranean cropland in California, USA. Applied Soil Ecology, 2021, 166, 104068.	2.1	11

#	Article	IF	CITATIONS
19	Plasticity of body growth and development in two cosmopolitan pupal parasitoids. Biological Control, 2021, 163, 104738.	1.4	12
20	Early-acting competitive superiority in opiine parasitoids of fruit flies (Diptera: Tephritidae): Implications for biological control of invasive tephritid pests. Biological Control, 2021, 162, 104725.	1.4	9
21	Pheromone Deployment Strategies for Mating Disruption of a Vineyard Mealybug. Journal of Economic Entomology, 2021, 114, 2439-2451.	0.8	3
22	Population genomics of <i>Drosophila suzukii</i> reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	19
23	Season-Long Monitoring of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) Throughout the United States Using Commercially Available Traps and Lures. Journal of Economic Entomology, 2020, 113, 159-171.	0.8	28
24	Functional Responses of Three Candidate Asian Larval Parasitoids Evaluated for Classical Biological Control of Drosophila suzukii (Diptera: Drosophilidae). Journal of Economic Entomology, 2020, 113, 73-80.	0.8	21
25	Trends in vector-borne transmission efficiency from coinfected hosts: Grapevine leafroll-associated virus-3 and Grapevine virus A. European Journal of Plant Pathology, 2020, 156, 1163-1167.	0.8	14
26	Development of a Mating Disruption Program for a Mealybug, Planococcus ficus, in Vineyards. Insects, 2020, 11, 635.	1.0	14
27	Influence of Riparian Habitat and Ground Covers on Threecornered Alfalfa Hopper (Hemiptera:) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 0.8	i /Oygrlock 10
28	Reassessment of molecular and morphological variation within the Anagrus atomus species complex (Hymenoptera: Mymaridae): egg parasitoids of leafhoppers (Hemiptera: Cicadellidae) in Europe and North America. Journal of Natural History, 2020, 54, 1735-1758.	0.2	6
29	Comparing the Feeding Damage of the Invasive Brown Marmorated Stink Bug to a Native Stink Bug and Leaffooted Bug on California Pistachios. Insects, 2020, 11 , 688 .	1.0	11
30	In Season Drip and Foliar Insecticides for a Mealybug in Grapes, 2019. Arthropod Management Tests, 2020, 45, .	0.1	1
31	Optimizing Trap Characteristics to Monitor the Leaffooted Bug Leptoglossus zonatus (Heteroptera:) Tj ETQq1 I	l 0.784314 1.0	t rgBT /Overlo
32	Current Distribution of the Olive Psyllid, Euphyllura olivina, in California and Initial Evaluation of the Mediterranean Parasitoid Psyllaephagus euphyllurae as a Biological Control Candidate. Insects, 2020, 11, 146.	1.0	4
33	Identification of Vitis Cultivars, Rootstocks, and Species Expressing Resistance to a Planococcus Mealybug. Insects, 2020, 11, 86.	1.0	11
34	Biological Control of Spotted-Wing Drosophila: An Update on Promising Agents., 2020,, 143-167.		25
35	Evaluation of Insecticides for a Leaffooted Bug in Pomegranates, 2018. Arthropod Management Tests, 2019, 44, .	0.1	0
36	Temporal Dynamics of Host Use by Drosophila suzukii in California's San Joaquin Valley: Implications for Area-Wide Pest Management. Insects, 2019, 10, 206.	1.0	16

#	Article	IF	Citations
37	Local and Landscape Effects to Biological Controls in Urban Agriculture—A Review. Insects, 2019, 10, 215.	1.0	20
38	Seasonal Dynamics of the Leaffooted Bug Leptoglossus zonatus and Its Implications for Control in Almonds and Pistachios. Insects, 2019, 10, 255.	1.0	14
39	Comparison of thermal performances of two Asian larval parasitoids of Drosophila suzukii. Biological Control, 2019, 136, 104000.	1.4	17
40	Biological Control of Spotted-Wing Drosophila (Diptera: Drosophilidae)â€"Current and Pending Tactics. Journal of Integrated Pest Management, 2019, 10, .	0.9	105
41	Insecticide Trial for a Mealybug in Grapes, 2019. Arthropod Management Tests, 2019, 44, .	0.1	O
42	Potential competitive outcomes among three solitary larval endoparasitoids as candidate agents for classical biological control of Drosophila suzukii. Biological Control, 2019, 130, 18-26.	1.4	32
43	Spatial Associations of Vines Infected With Grapevine Red Blotch Virus in Oregon Vineyards. Plant Disease, 2019, 103, 1507-1514.	0.7	29
44	Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. Journal of Pest Science, 2019, 92, 509-522.	1.9	61
45	First known survey of cannabis production practices in California. California Agriculture, 2019, 73, 119-127.	0.5	29
46	Growers say cannabis legalization excludes small growers, supports illicit markets, undermines local economies. California Agriculture, 2019, 73, 177-184.	0.5	22
47	Native grass ground covers provide multiple ecosystem services in Californian vineyards. Journal of Applied Ecology, 2018, 55, 2473-2483.	1.9	45
48	Phenology of Brown Marmorated Stink Bug in a California Urban Landscape. Journal of Economic Entomology, 2018, 111, 780-786.	0.8	13
49	Thermal Performance of Two Indigenous Pupal Parasitoids Attacking the Invasive Drosophila suzukii (Diptera: Drosophilidae). Environmental Entomology, 2018, 47, 764-772.	0.7	35
50	Aspects of the biology and reproductive strategy of two Asian larval parasitoids evaluated for classical biological control of Drosophila suzukii. Biological Control, 2018, 121, 58-65.	1.4	47
51	Entomological Opportunities and Challenges for Sustainable Viticulture in a Global Market. Annual Review of Entomology, 2018, 63, 193-214.	5.7	46
52	Summer Flowering Cover Crops Support Wild Bees in Vineyards. Environmental Entomology, 2018, 47, 63-69.	0.7	17
53	Temperature-dependent development of Oenopia conglobata (Col.: Coccinellidae) fed on Aphis gossypii (Hem.: Aphididae). International Journal of Tropical Insect Science, 2018, 38, 410-417.	0.4	5

Investigating Host Plant-Based Semiochemicals for Attracting the Leaffooted Bug (Hemiptera:) Tj ETQq $0\ 0\ 0\ rgBT$ / Overlock $10\ Tf\ 50\ 62$

#	Article	IF	CITATIONS
55	Incidence of Grapevine Leafroll Disease: Effects of Grape Mealybug (Pseudococcus maritimus) Abundance and Pathogen Supply. Journal of Economic Entomology, 2018, 111, 1542-1550.	0.8	13
56	Foraging Distance of the Argentine Ant in California Vineyards. Journal of Economic Entomology, 2018, 111, 672-679.	0.8	16
57	Determining the geographic origin of invasive populations of the mealybug Planococcus ficus based on molecular genetic analysis. PLoS ONE, 2018, 13, e0193852.	1.1	23
58	Aerial dispersal ability does not drive spider success in a crop landscape. Ecological Entomology, 2018, 43, 683-694.	1.1	5
59	Research and application of <i>Chouioia cunea</i> Yang (Hymenoptera: Eulophidae) in China. Biocontrol Science and Technology, 2017, 27, 301-310.	0.5	11
60	Temporal Patterns in the Abundance and Species Composition of Spiders on Host Plants of the Invasive Moth Epiphyas postvittana (Lepidoptera: Tortricidae). Environmental Entomology, 2017, 46, 502-510.	0.7	6
61	Landscape diversity and crop vigor outweigh influence of local diversification on biological control of a vineyard pest. Ecosphere, 2017, 8, e01736.	1.0	21
62	Innate Olfactory Responses of Asobara japonica Toward Fruits Infested by the Invasive Spotted Wing Drosophila. Journal of Insect Behavior, 2017, 30, 495-506.	0.4	19
63	No evidence of transmission of grapevine leafroll-associated viruses by phylloxera (Daktulosphaira) Tj ETQq $1\ 1\ 0.7$	84314 rgt	3Ţ/Overlock
64	Review of Ecologically-Based Pest Management in California Vineyards. Insects, 2017, 8, 108.	1.0	36
65	Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE, 2017, 12, e0183525.	1.1	47
66	Chemical Ecology of Parasitic Hymenoptera. BioMed Research International, 2016, 2016, 1-2.	0.9	0
67	Greenhouse Evaluation of Azadirachtin and White Mineral Oil on Egg Mortality of Virginia Creeper Leafhopper, 2015. Arthropod Management Tests, 2016, , tsw138.	0.1	O
68	Post-establishment assessment of host plant specificity of <i>Arytainilla spartiophila </i> (Hemiptera:) Tj ETQq0 0 0 Biocontrol Science and Technology, 2016, 26, 995-1008.	rgBT /Ove 0.5	rlock 10 Tf ! 3
69	Drosophila suzukii population response to environment and management strategies. Journal of Pest Science, 2016, 89, 653-665.	1.9	90
70	Phenyl Propionate and Sex Pheromone for Monitoring Navel Orangeworm (Lepidoptera: Pyralidae) in the Presence of Mating Disruption. Journal of Economic Entomology, 2016, 109, 958-961.	0.8	10
71	Host Plant Associations of Anagrusspp. (Hymenoptera: Mymaridae) and Erythroneura elegantula (Hemiptera: Cicadellidae) in Northern California. Environmental Entomology, 2016, 45, 602-615.	0.7	12
72	Ferrisia gilli (Hemiptera: Pseudococcidae) Transmits Grapevine Leafroll-Associated Viruses. Journal of Economic Entomology, 2016, 109, 1519-1523.	0.8	19

#	Article	IF	CITATIONS
73	Neotype designation for <i>Metaphycus hageni</i> Daane &	0.784314 r	gBT /Overlo
74	Disease progression of vector-mediated Grapevine leafroll-associated virus 3 infection of mature plants under commercial vineyard conditions. European Journal of Plant Pathology, 2016, 146, 105-116.	0.8	18
7 5	Populations of <i>Bactrocera oleae </i> (Diptera: Tephritidae) and Its Parasitoids in Himalayan Asia. Annals of the Entomological Society of America, 2016, 109, 81-91.	1.3	12
76	Population dynamics and ecology of Drosophila suzukii in Central California. Journal of Pest Science, 2016, 89, 701-712.	1.9	96
77	First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. Journal of Pest Science, 2016, 89, 823-835.	1.9	151
78	Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. BioControl, 2016, 61, 387-397.	0.9	67
79	Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biological Control, 2016, 96, 64-71.	1.4	63
80	Impacts of the Adventive Psyllid <i>Arytainilla spartiophila</i> (Hemiptera: Psyllidae) on Growth of the Invasive Weed <i>Cytisus scoparius</i> Under Controlled and Field Conditions in California. Environmental Entomology, 2016, 45, 109-116.	0.7	9
81	Overwintering Survival of <i>Drosophila suzukii</i> (Diptera: Drosophilidae) and the Effect of Food on Adult Survival in California's San Joaquin Valley. Environmental Entomology, 2016, 45, 763-771.	0.7	27
82	Cascading effects of cannibalism in a top predator. Ecological Entomology, 2015, 40, 805-813.	1.1	1
83	Landscape Diversity and Crop Vigor Influence Biological Control of the Western Grape Leafhopper (E.) Tj ETQq1	1 0.78431 1.1	4 rgBT /Over
84	Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California. PLoS ONE, 2015, 10, e0142120.	1.1	13
85	Vineyard proximity to riparian habitat influences Western grape leafhopper (Erythroneura elegantula) Tj ETQq1	1 0.784314	l rgBT /Overl
86	Crop Loss Relationships and Economic Injury Levels for <i>Ferrisia gilli </i> (Hemiptera:) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 50 0.8) 227 Td (Pse 4
87	Classic biological control of olive fruit fly in California, USA: release and recovery of introduced parasitoids. BioControl, 2015, 60, 317-330.	0.9	29
88	Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biological Control, 2015, 84, 28-35.	1.4	111
89	Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science, 2015, 88, 469-494.	1.9	711
90	Impacts of exotic spider spillover on resident arthropod communities in a natural habitat. Ecological Entomology, 2015, 40, 69-77.	1.1	8

#	Article	IF	Citations
91	Integrating Temperature-Dependent Life Table Data into a Matrix Projection Model for Drosophila suzukii Population Estimation. PLoS ONE, 2014, 9, e106909.	1.1	124
92	Factors Limiting Peach as a Potential Host for <l>Drosophila suzukii</l> (Diptera:) Tj ETQq0 0 0 rgBT /C	Overlock 1	0 <u>Tf</u> 50 702
93	Life History Parameters of <i>Chinavia hilaris</i> (Hemiptera: Pentatomidae), a Stink Bug Injurious to Pistachios in California. Journal of Economic Entomology, 2014, 107, 166-173.	0.8	14
94	The roles of top and intermediate predators in herbivore suppression: contrasting results from the field and laboratory. Ecological Entomology, 2014, 39, 149-158.	1.1	9
95	Estimation of stage duration distributions and mortality under repeated cohort censuses. Biometrics, 2014, 70, 346-355.	0.8	6
96	Brood Guarding by an Adult Parasitoid Reduces Cannibalism of Parasitoid-Attacked Conspecifics by a Caterpillar Host. Journal of Insect Behavior, 2014, 27, 826-837.	0.4	4
97	Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for Integrated Pest Management. Journal of Pest Science, 2014, 87, 385-405.	1.9	128
98	Tri-trophic movement of carotenoid pigments from host plant to the parasitoid of a caterpillar. Journal of Insect Physiology, 2014, 61, 58-65.	0.9	2
99	Cannibalism of parasitoidâ€attacked conspecifics in a nonâ€carnivorous caterpillar. Entomologia Experimentalis Et Applicata, 2014, 151, 112-121.	0.7	11
100	Resident spiders as predators of the recently introduced light brown apple moth, <i><scp>E</scp>piphyas postvittana</i> . Entomologia Experimentalis Et Applicata, 2014, 151, 65-74.	0.7	11
101	A Comparison of Two Parasitoids (Hymenoptera: Encyrtidae) of the Vine Mealybug: Rapid, Non-Discriminatory Oviposition Is Favored When Ants Tend the Host. Environmental Entomology, 2014, 43, 995-1002.	0.7	9
102	Predicting the outcomes of a triâ€trophic interaction between an indigenous parasitoid and an exotic herbivorous pest and its host plants. Annals of Applied Biology, 2013, 163, 288-297.	1.3	12
103	Complementary effects of resident natural enemies on the suppression of the introduced moth Epiphyas postvittana. Biological Control, 2013, 64, 125-131.	1.4	20
104	Low temperature storage effects on two olive fruit fly parasitoids. BioControl, 2013, 58, 175-185.	0.9	14
105	Contrasting landscape effects on species diversity and invasion success within a predator community. Diversity and Distributions, 2013, 19, 281-293.	1.9	17
106	Biology of <i>Habrobracon gelechiae </i> (Hymenoptera: Braconidae), as a Parasitoid of the Obliquebanded Leafroller (Lepidoptera: Tortricidae). Environmental Entomology, 2013, 42, 107-115.	0.7	12
107	Biology and Potential Host Range of <i>Pediobius ni</i> (Hymenoptera: Eulophidae) as a Novel Resident Parasitoid of Light Brown Apple Moth (Lepidoptera: Tortricidae) in California. Annals of the Entomological Society of America, 2013, 106, 351-358.	1.3	0
108	Overwintering Survival of Olive Fruit Fly (Diptera: Tephritidae) and Two Introduced Parasitoids in California. Environmental Entomology, 2013, 42, 467-476.	0.7	16

#	Article	IF	CITATIONS
109	Evaluation of an indigenous parasitoidHabrobracon gelechiae(Hymenoptera: Braconidae) for biological control of light brown apple mothEpiphyas postvittana(Lepidoptera: Tortricidae) in California. Biocontrol Science and Technology, 2013, 23, 433-447.	0.5	8
110	Seasonal Biology of <l>Ferrisia gilli</l> (Hemiptera: Pseudococcidae) in California Sierra Foothill Vineyards. Journal of Economic Entomology, 2013, 106, 1716-1725.	0.8	8
111	Ecology and management of grapevine leafroll disease. Frontiers in Microbiology, 2013, 4, 94.	1.5	137
112	Climate and the effectiveness of <i>Psyllaephagus bliteus </i> as a parasitoid of the red gum lerp psyllid. Biocontrol Science and Technology, 2012, 22, 1305-1320.	0.5	17
113	Performance Of <i>Psyttalia Humilis</i> (Hymenoptera: Braconidae) Reared From Irradiated Host on Olive Fruit Fly (Diptera: Tephritidae) In California. Environmental Entomology, 2012, 41, 497-507.	0.7	19
114	Light Brown Apple Moth in California: A Diversity of Host Plants and Indigenous Parasitoids. Environmental Entomology, 2012, 41, 81-90.	0.7	30
115	Seasonal Phenology of <l>Ferrisia gilli</l> (Hemiptera: Pseudococcidae) in Commercial Pistachios. Journal of Economic Entomology, 2012, 105, 1681-1687.	0.8	10
116	Management of Almond Leaf Scorch Disease: Long-Term Data on Yield, Tree Vitality, and Disease Progress. Plant Disease, 2012, 96, 1037-1044.	0.7	24
117	Syrphid flies suppress lettuce aphids. BioControl, 2012, 57, 819-826.	0.9	39
118	Biology and Management of Mealybugs in Vineyards. , 2012, , 271-307.		103
119	Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biological Control, 2012, 60, 247-254.	1.4	26
120	Natural enemies of <i>Planococcus ficus </i> (Hemiptera: Pseudococcidae) in Fars Province vineyards, Iran. Biocontrol Science and Technology, 2011, 21, 427-433.	0.5	31
121	Ecosystem services in the face of invasion: the persistence of native and nonnative spiders in an agricultural landscape., 2011, 21, 565-576.		25
122	Prospects for improving biological control of olive fruit fly, <i>Bactrocera oleae</i> (Diptera:) Tj ETQq0 0 0 rgBT /Ov 1005-1025.	verlock 10 0.5	Tf 50 227 T 41
123	Diversity and invasion within a predator community: impacts on herbivore suppression. Journal of Applied Ecology, 2011, 48, 453-461.	1.9	22
124	Honeydew and insecticide bait as competing food resources for a fruit fly and common natural enemies in the olive agroecosystem. Entomologia Experimentalis Et Applicata, 2011, 139, 128-137.	0.7	22
125	Floral resources enhance aphid suppression by a hoverfly. Entomologia Experimentalis Et Applicata, 2011, 141, 138-144.	0.7	47
126	Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biological Control, 2011, 56, 76-84.	1.4	120

#	Article	IF	CITATIONS
127	Growth, development and consumption by four syrphid species associated with the lettuce aphid, Nasonovia ribisnigri, in California. Biological Control, 2011, 58, 271-276.	1.4	38
128	The decline of public interest agricultural science and the dubious future of crop biological control in California. Agriculture and Human Values, 2011, 28, 483-496.	1.7	33
129	Comparative evaluation of two olive fruit fly parasitoids under varying abiotic conditions. BioControl, 2011, 56, 283-293.	0.9	30
130	Establishment of Psyllaephagus parvus and P. perplexans as serendipitous biological control agents of Eucalyptus psyllids in southern California. BioControl, 2011, 56, 735-744.	0.9	7
131	Response of <l>Psyttalia humilis</l> (Hymenoptera: Braconidae) to Olive Fruit Fly (Diptera:) Tj ETQq1 1	0.784314	rgBT /Overl
132	Seasonal Abundance of Draeculacephala minerva and Other Xylella fastidiosa Vectors in California Almond Orchards and Vineyards. Journal of Economic Entomology, 2011, 104, 367-374.	0.8	24
133	Development of a Multiplex PCR for Identification of Vineyard Mealybugs. Environmental Entomology, 2011, 40, 1595-1603.	0.7	41
134	Effect of Host Plant Tissue on the Vector Transmission of Grapevine Leafroll-Associated Virus 3. Journal of Economic Entomology, 2011, 104, 1480-1485.	0.8	8
135	Occurrence of Grapevine Leafroll-Associated Virus Complex in Napa Valley. PLoS ONE, 2011, 6, e26227.	1.1	55
136	Biological controls investigated to aid management of olive fruit fly in California. California Agriculture, 2011, 65, 21-28.	0.5	26
137	High temperature affects olive fruit fly populations in California's Central Valley. California Agriculture, 2011, 65, 29-33.	0.5	25
138	Epidemiology of Diseases Caused by <i>Xylella fastidiosa < /i>in California: Evaluation of Alfalfa as a Source of Vectors and Inocula. Plant Disease, 2010, 94, 827-834.</i>	0.7	22
139	Mealybug Transmission of Grapevine Leafroll Viruses: An Analysis of Virus–Vector Specificity. Phytopathology, 2010, 100, 830-834.	1.1	126
140	The role of dispersal from natural habitat in determining spider abundance and diversity in California vineyards. Agriculture, Ecosystems and Environment, 2010, 135, 260-267.	2.5	54
141	Regional patterns in the invasion success of Cheiracanthium spiders (Miturgidae) in vineyard ecosystems. Biological Invasions, 2010, 12, 2499-2508.	1.2	20
142	Field performance and fitness of an olive fruit fly parasitoid, Psyttalia humilis (Hymenoptera:) Tj ETQq0 0 0 rgBT /C	Overlock 10 1.4	0 <u>Тf</u> 50 142 ⁻
143	Plant Water Stress, Leaf Temperature, and Spider Mite (Acari: Tetranychidae) Outbreaks in California Vineyards. Environmental Entomology, 2010, 39, 1232-1241.	0.7	29
144	Accumulation of Pest Insects on Eucalyptus in California: Random Process or Smoking Gun. Journal of Economic Entomology, 2010, 103, 1943-1949.	0.8	35

#	Article	IF	CITATIONS
145	Distribution of Glassy-Winged Sharpshooter and Threecornered Alfalfa Hopper on Plant Hosts in the San Joaquin Valley, California. Journal of Economic Entomology, 2010, 103, 1051-1059.	0.8	16
146	Ultralow Oxygen Treatment for Control of <1>Planococcus ficus 1 (Hemiptera:) Tj ETQq0 0 0 rgBT /O	verlock 10	Tf 50 702 T
147	Estimation of Feeding Threshold for <i>Homalodisca vitripennis</i> (Hemiptera: Cicadellidae) and Its Application to Prediction of Overwintering Mortality. Environmental Entomology, 2010, 39, 1264-1275.	0.7	12
148	Fruit fly parasitoids in coffee in Mpumalanga Province, South Africa. Biocontrol Science and Technology, 2010, 20, 621-624.	0.5	6
149	Synthesis and Bioassay of Racemic and Chiral <i>trans</i> -α-Necrodyl Isobutyrate, the Sex Pheromone of the Grape Mealybug <i>Pseudococcus maritimus</i> . Journal of Agricultural and Food Chemistry, 2010, 58, 4977-4982.	2.4	20
150	Olive Fruit Fly: Managing an Ancient Pest in Modern Times. Annual Review of Entomology, 2010, 55, 151-169.	5.7	279
151	High Summer Temperatures Affect the Survival and Reproduction of Olive Fruit Fly (Diptera:) Tj ETQq1 1 0.78431	4 rgBT /Ο\ 0:7	verlock 10 Tf
152	Non-target host risk assessment of the idiobiont parasitoid <i> Bracon celer </i> (Hymenoptera:) Tj ETQq0 0 0 rgBT Technology, 2009, 19, 701-715.	/Overlock 0.5	10 Tf 50 46 14
153	Influences of Temperature on <i>Homalodisca vitripennis</i> (Hemiptera: Cicadellidae) Survival Under Various Feeding Conditions. Environmental Entomology, 2009, 38, 1485-1495.	0.7	16
154	Combined Effects of Heat Stress and Food Supply on Flight Performance of Olive Fruit Fly (Diptera:) Tj ETQq0 0 0	rgBT /Ove	rlogk 10 Tf 5
155	Effects of <i>Peganum harmala</i> (Zygophyllaceae) Seed Extract on the Olive Fruit Fly (Diptera: Tephritidae) and Its Larval Parasitoid <i>Psyttalia concolor</i> (Hymenoptera:) Tj ETQq1 1 0.7	8 43 14 rgl	BT2#Overlock
156	Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic and Applied Ecology, 2009, 10, 216-227.	1.2	55
157	Larger olive fruit size reduces the efficiency of Psyttalia concolor, as a parasitoid of the olive fruit fly. Biological Control, 2009, 49, 45-51.	1.4	57
158	Sex Pheromone of the Longtailed Mealybug: A New Class of Monoterpene Structure. Organic Letters, 2009, 11, 2683-2685.	2.4	38
159	Identifying the predator complex of Homalodisca vitripennis (Hemiptera: Cicadellidae): a comparative study of the efficacy of an ELISA and PCR gut content assay. Oecologia, 2008, 157, 629-640.	0.9	77
160	Prospective evaluation of the biological control of vine mealybug: refuge effects and climate. Journal of Applied Ecology, 2008, 45, 524-536.	1.9	79
161	Parasitoids of obscure mealybug, <i>Pseudococcus viburni </i> (Hem.: Pseudococcidae) in California: establishment of <i>Pseudaphycus flavidulus </i> (Hym.: Encyrtidae) and discussion of related parasitoid species. Biocontrol Science and Technology, 2008, 18, 43-57.	0.5	18
162	Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biological Control, 2008, 44, 79-89.	1.4	48

#	Article	IF	Citations
163	Olfactory responses of the egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae), to host plants infested by Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae). Biological Control, 2008, 47, 8-15.	1.4	15
164	Testing Baits to Control Argentine Ants (Hymenoptera: Formicidae) in Vineyards. Journal of Economic Entomology, 2008, 101, 699-709.	0.8	39
165	Ultralow Oxygen Treatment for Control of Latrodectus hesperus (Araneae: Theridiidae) on Harvested Table Grapes. Journal of Economic Entomology, 2008, 101, 1515-1518.	0.8	7
166	Testing Baits to Control Argentine Ants (Hymenoptera: Formicidae) in Vineyards. Journal of Economic Entomology, 2008, 101, 699-709.	0.8	17
167	Postharvest survival of navel orangeworm assessed in pistachios. California Agriculture, 2008, 62, 30-35.	0.5	17
168	Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex. California Agriculture, 2008, 62, 167-176.	0.5	72
169	Liquid baits control Argentine ants sustainably in coastal vineyards. California Agriculture, 2008, 62, 177-183.	0.5	30
170	Improving Liquid Bait Programs for Argentine Ant Control: Bait Station Density. Environmental Entomology, 2007, 36, 1475-1484.	0.7	31
171	Temperature-dependent development of Macrocentrus iridescens (Hymenoptera: Braconidae) as a parasitoid of the obliquebanded leafroller (Lepidoptera: Tortricidae): Implications for field synchrony of parasitoid and host. Biological Control, 2007, 42, 110-118.	1.4	10
172	Ingestion of spinosad bait GF-120 and resulting impact on adultChrysoperla carnea(Neuroptera:) Tj ETQq0 0 0 rg	BT/Overlo	ock 10 Tf 50 3
173	Mortality of olive fruit fly pupae in California. Biocontrol Science and Technology, 2007, 17, 797-807.	0.5	38
174	trans-α-Necrodyl isobutyrate, the sex pheromone of the grape mealybug, Pseudococcus maritimus. Tetrahedron Letters, 2007, 48, 8434-8437.	0.7	47
175	Impacts of Argentine ants on mealybugs and their natural enemies in California's coastal vineyards. Ecological Entomology, 2007, 32, 583-596.	1.1	124
176	Development and application of a glassy-winged and smoke-tree sharpshooter egg-specific predator gut content ELISA. Biological Control, 2006, 37, 108-118.	1.4	28
177	Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biological Control, 2006, 39, 248-255.	1.4	36
178	Pheromone-Based Mating Disruption of <l>Planococcus ficus</l> (Hemiptera:) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 142 Td (
179	Ground Vegetation Survey for Xylella fastidiosa in California Almond Orchards. Plant Disease, 2006, 90, 905-909.	0.7	26
180	Protective mechanisms for pupae of Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae), a parasitoid of the red-gum lerp psyllid, Glycaspis brimblecombei Moore (Hemiptera: Psylloidea). Australian Journal of Entomology, 2006, 45, 101-105.	1.1	17

#	Article	IF	Citations
181	Development of molecular diagnostic markers for sharpshooters Homalodisca coagulata and Homalodisca liturata for use in predator gut content examinations. Entomologia Experimentalis Et Applicata, 2006, 119, 109-119.	0.7	41
182	The biology of Bracon celer as a parasitoid of the olive fruit fly. BioControl, 2006, 51, 553-567.	0.9	31
183	Effects of liquid insecticide baits on Argentine ants in California's coastal vineyards. Crop Protection, 2006, 25, 592-603.	1.0	57
184	Pheromone-Based Mating Disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in California Vineyards. Journal of Economic Entomology, 2006, 99, 1280-1290.	0.8	97
185	Diachasmimorpha longicaudataandD. kraussii(Hymenoptera: Braconidae), potential parasitoids of the olive fruit fly. Biocontrol Science and Technology, 2006, 16, 169-179.	0.5	49
186	New controls investigated for vine mealybug. California Agriculture, 2006, 60, 31-38.	0.5	88
187	(2,3,4,4-Tetramethylcyclopentyl)Methyl Acetate, a Sex Pheromone from the Obscure Mealybug: First Example of a New Structural Class of Monoterpenes. Journal of Chemical Ecology, 2005, 31, 2999-3005.	0.9	49
188	DAY VS. NIGHT SAMPLING FOR SPIDERS IN GRAPE VINEYARDS. Journal of Arachnology, 2005, 33, 25-32.	0.3	10
189	Biology of <i>Macrocentrus iridescens</i> (Hymenoptera: Braconidae): A Parasitoid of the Obliquebanded Leafroller (Lepidoptera: Tortricidae). Environmental Entomology, 2005, 34, 336-343.	0.7	18
190	Chemistry and Applications of Mealybug Sex Pheromones. ACS Symposium Series, 2005, , 11-27.	0.5	16
191	The biology of Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae), a parasitoid of the red gum lerp psyllid (Hemiptera: Psylloidea). Biological Control, 2005, 32, 228-235.	1.4	58
192	Hot-Water Treatments for Control of <i>Planococcus ficus</i> (Homoptera: Pseudococcidae) on Dormant Grape Cuttings. Journal of Economic Entomology, 2005, 98, 1109-1115.	0.8	31
193	Biological and cultural controls … Nonpesticide alternatives can suppress crop pests. California Agriculture, 2005, 59, 23-28.	0.5	23
194	Large bugs damage pistachio nuts most severely during midseason. California Agriculture, 2005, 59, 95-102.	0.5	38
195	Imported parasitic wasp helps control red gum lerp psyllid. California Agriculture, 2005, 59, 229-235.	0.5	37
196	Monitoring Planococcus ficus in South African vineyards with sex pheromone-baited traps. Crop Protection, 2004, 23, 1089-1096.	1.0	93
197	Temperature-dependent development of Anagyrus pseudococci (Hymenoptera: Encyrtidae) as a parasitoid of the vine mealybug, Planococcus ficus (Homoptera: Pseudococcidae). Biological Control, 2004, 31, 123-132.	1.4	69
198	Spider and Leafhopper (<i>Erythroneura</i> spp.) Response to Vineyard Ground Cover. Environmental Entomology, 2003, 32, 1085-1098.	0.7	52

#	Article	lF	Citations
199	Development and Optimization of Methods for Using Sex Pheromone for Monitoring the Mealybug <l>Planococcus ficus</l> (Homoptera: Pseudococcidae) in California Vineyards. Journal of Economic Entomology, 2002, 95, 706-714.	0.8	102
200	Seasonal Movement and Distribution of the Grape Mealybug (Homoptera: Pseudococcidae): Developing a Sampling Program for San Joaquin Valley Vineyards. Journal of Economic Entomology, 2001, 94, 291-301.	0.8	98
201	15N -enrichment of plant tissue to mark phytophagous insects, associated parasitoids, and flower-visiting entomophaga. Entomologia Experimentalis Et Applicata, 2001, 98, 173-180.	0.7	32
202	Sampling program for grape mealybugs improves pest management. California Agriculture, 2001, 55, 19-27.	0.5	15
203	Commercialization of Predators: Recent Lessons from Green Lacewings (Neuroptera: Chrysopidae:) Tj ETQq1 1 C).784314 0.1	rgBT_/Overloc
204	Influence of ground cover on spider populations in a table grape vineyard. Ecological Entomology, 1998, 23, 33-40.	1.1	79
205	Can cover crops reduce leafhopper abundance in vineyards?. California Agriculture, 1998, 52, 27-33.	0.5	26
206	Native gray ant has beneficial role in peach orchards. California Agriculture, 1998, 52, 25-30.	0.5	6
207	Comparison of Sampling Methods Used to Estimate Spider (Araneae) Species Abundance and Composition in Grape Vineyards. Environmental Entomology, 1997, 26, 142-149.	0.7	31
208	Spider (Araneae) Species Composition and Seasonal Abundance in San Joaquin Valley Grape Vineyards. Environmental Entomology, 1995, 24, 823-831.	0.7	34
209	Dormant-Season Sprays Affect the Mortality of Peach Twig Borer (Lepidoptera: Gelechiidae) and Its Parasitoids. Journal of Economic Entomology, 1993, 86, 1679-1685.	0.8	2
210	Effectiveness of leafhopper control varies with lacewing release methods. California Agriculture, 1993, 47, 19-23.	0.5	21
211	Imported parasite may help control European asparagus aphid. California Agriculture, 1992, 46, 12-14.	0.5	1
212	Effects of Mediterranean Fruit Fly Malathion Bait Spray on the Longevity and Oviposition of Parasitoids of Linden and Tuliptree Aphids (Homoptera: Aphididae). Environmental Entomology, 1990, 19, 1130-1134.	0.7	27
213	Survey of Vineyard Insects and Plants to Identify Potential Insect Vectors and Non-crop Reservoirs of Grapevine Red Blotch Virus. PhytoFrontiers, 0, , .	0.8	7
214	First records of adventive populations of the parasitoids Ganaspis brasiliensis and Leptopilina japonica in the United States. Journal of Hymenoptera Research, 0, 91, 11-25.	0.8	13
215	Identifying cryptic species of Planococcus infesting vineyards to improve control efforts. Journal of Pest Science, 0, , .	1.9	0