Tingting Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1461719/publications.pdf Version: 2024-02-01

TINCTING CUI

#	Article	IF	CITATIONS
1	HSF1-Dependent Autophagy Activation Contributes to the Survival of Melanocytes Under Oxidative Stress in Vitiligo. Journal of Investigative Dermatology, 2022, 142, 1659-1669.e4.	0.7	12
2	Metabolomics Signature and Potential Application of Serum Polyunsaturated Fatty Acids Metabolism in Patients With Vitiligo. Frontiers in Immunology, 2022, 13, 839167.	4.8	4
3	Oxeiptosis: a novel pathway of melanocytes death in response to oxidative stress in vitiligo. Cell Death Discovery, 2022, 8, 70.	4.7	21
4	RIP1-Mediated Necroptosis Facilitates Oxidative Stress‒Induced Melanocyte Death, Offering Insight into Vitiligo. Journal of Investigative Dermatology, 2021, 141, 2921-2931.e6.	0.7	12
5	Intracellular virus sensor MDA5 exacerbates vitiligo by inducing the secretion of chemokines in keratinocytes under virus invasion. Cell Death and Disease, 2020, 11, 453.	6.3	14
6	Homocysteine induces melanocytes apoptosis via PERK–eIF2α–CHOP pathway in vitiligo. Clinical Science, 2020, 134, 1127-1141.	4.3	13
7	Role of the aryl hydrocarbon receptor signaling pathway in promoting mitochondrial biogenesis against oxidative damage in human melanocytes. Journal of Dermatological Science, 2019, 96, 33-41.	1.9	27
8	Oxidative Stress–Induced HMGB1 Release fromÂMelanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation inÂVitiligo. Journal of Investigative Dermatology, 2019, 139, 2174-2184.e4.	0.7	64
9	Ginkgo biloba extract protects human melanocytes from H ₂ O ₂ â€induced oxidative stress by activating Nrf2. Journal of Cellular and Molecular Medicine, 2019, 23, 5193-5199.	3.6	35
10	Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8+ T cells activation via JAK-STAT pathway in vitiligo. Free Radical Biology and Medicine, 2019, 139, 80-91.	2.9	52
11	SIRT3-Dependent Mitochondrial Dynamics Remodeling Contributes to Oxidative Stress-Induced Melanocyte Degeneration in Vitiligo. Theranostics, 2019, 9, 1614-1633.	10.0	92
12	Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radical Biology and Medicine, 2018, 129, 492-503.	2.9	69
13	HOâ€1 regulates the function of Treg: Association with the immune intolerance in vitiligo. Journal of Cellular and Molecular Medicine, 2018, 22, 4335-4343.	3.6	27
14	Identification of the Risk HLA-A Alleles and Autoantigen in Han Chinese Vitiligo Patients and the Association of CD8+T Cell Reactivity with Disease Characteristics. Medical Science Monitor, 2018, 24, 6489-6497.	1.1	6
15	Simvastatin Protects Human Melanocytes from H2O2-Induced Oxidative Stress byÂActivating Nrf2. Journal of Investigative Dermatology, 2017, 137, 1286-1296.	0.7	62
16	Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo. Scientific Reports, 2017, 7, 42394.	3.3	85
17	Nrf2 Promotes Keratinocyte Proliferation in Psoriasis through Up-Regulation of Keratin 6, Keratin 16, and Keratin 17. Journal of Investigative Dermatology, 2017, 137, 2168-2176.	0.7	104
18	Identification of Novel HLA-A*0201-Restricted CTL Epitopes in Chinese Vitiligo Patients. Scientific Reports, 2016, 6, 36360.	3.3	6

#	Article	IF	CITATIONS
19	Impaired Activation of the Nrf2-ARE Signaling Pathway Undermines H2O2-Induced Oxidative Stress Response: A Possible Mechanism for Melanocyte Degeneration in Vitiligo. Journal of Investigative Dermatology, 2014, 134, 2221-2230.	0.7	145