
Wojciech Chrzanowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1461569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compritol solid lipid nanoparticle formulations enhance the protective effect of betulinic acid derivatives in human Müller cells against oxidative injury. Experimental Eye Research, 2022, 215, 108906.	2.6	9
2	Made by cells for cells – extracellular vesicles as next-generation mainstream medicines. Journal of Cell Science, 2022, 135, .	2.0	8
3	Antimicrobial and Anti-inflammatory Gallium–Defensin Surface Coatings for Implantable Devices. ACS Applied Materials & Interfaces, 2022, 14, 9685-9696.	8.0	7
4	Self-Assembly of Solubilized Human Hair Keratins. ACS Biomaterials Science and Engineering, 2021, 7, 83-89.	5.2	7
5	Celltrack R-CNN: A Novel End-To-End Deep Neural Network For Cell Segmentation And Tracking In Microscopy Images. , 2021, , .		7
6	Extracellular Vesicle-Based Coatings Enhance Bioactivity of Titanium Implants—SurfEV. Nanomaterials, 2021, 11, 1445.	4.1	7
7	New Multiscale Characterization Methodology for Effective Determination of Isolation–Structure–Function Relationship of Extracellular Vesicles. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669537.	4.1	7
8	Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano, 2021, 15, 18608-18623.	14.6	76
9	Positively charged gold–silver nanostar enabled molecular characterization of cancer associated extracellular vesicles. Analytical Methods, 2020, 12, 5908-5915.	2.7	7
10	Evaluation of the In Vitro Stability of Stimuli-Sensitive Fatty Acid-Based Microparticles for the Treatment of Lung Cancer. Langmuir, 2020, 36, 11138-11146.	3.5	4
11	The protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery. Nanoscale Advances, 2020, 2, 4798-4812.	4.6	17
12	Can Stem Cells Beat COVID-19: Advancing Stem Cells and Extracellular Vesicles Toward Mainstream Medicine for Lung Injuries Associated With SARS-CoV-2 Infections. Frontiers in Bioengineering and Biotechnology, 2020, 8, 554.	4.1	49
13	Cellular fate of deformable needle-shaped PLGA-PEG fibers. Acta Biomaterialia, 2020, 112, 182-189.	8.3	7
14	Development of brushite particles synthesized in the presence of acidic monomers for dental applications. Materials Science and Engineering C, 2020, 116, 111178.	7.3	5
15	Nanoscale Probing of Liposome Encapsulating Drug Nanocrystal Using Atomic Force Microscopy-Infrared Spectroscopy. Analytical Chemistry, 2020, 92, 9922-9931.	6.5	12
16	Superparamagnetic Iron Oxide Nanoparticles Modified with Silica Layers as Potential Agents for Lung Cancer Treatment. Nanomaterials, 2020, 10, 1076.	4.1	50
17	Distinct Influence of Saturated Fatty Acids on Malignant and Nonmalignant Human Lung Epithelial Cells. Lipids, 2020, 55, 117-126.	1.7	6
18	Stimuli-sensitive fatty acid-based microparticles for the treatment of lung cancer. Materials Science and Engineering C. 2020, 111, 110801.	7.3	18

WOJCIECH CHRZANOWSKI

#	Article	IF	CITATIONS
19	Dual-Stage Domain Adaptive Mitosis Detection for Histopathology Images. , 2020, , .		1
20	Placenta Stem/Stromal Cell–Derived Extracellular Vesicles for Potential Use in Lung Repair. Proteomics, 2019, 19, e1800166.	2.2	23
21	Isolation and Characterization of Extracellular Vesicles from Mesenchymal Stromal Cells. Methods in Molecular Biology, 2019, 2029, 15-23.	0.9	3
22	High Resolution Nanoscale Probing of Bacteriophages in an Inhalable Dry Powder Formulation for Pulmonary Infections. Analytical Chemistry, 2019, 91, 12760-12767.	6.5	12
23	Biological impact of nanodiamond particles – label free, high-resolution methods for nanotoxicity assessment. Nanotoxicology, 2019, 13, 1210-1226.	3.0	8
24	Impact of the Food Additive Titanium Dioxide (E171) on Gut Microbiota-Host Interaction. Frontiers in Nutrition, 2019, 6, 57.	3.7	90
25	Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Frontiers in Bioengineering and Biotechnology, 2019, 7, 324.	4.1	126
26	High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance-enhanced atomic force microscopy infrared spectroscopy. Nature Protocols, 2019, 14, 576-593.	12.0	65
27	Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments. Journal of Neuro-Oncology, 2019, 141, 303-313.	2.9	10
28	Probing Chemical and Mechanical Nanodomains in Copolymer Nanorods with Correlative Atomic Force Microscopy—Nanoâ€correscopy. Particle and Particle Systems Characterization, 2018, 35, 1700409.	2.3	6
29	None of us is the same as all of us: resolving the heterogeneity of extracellular vesicles using single-vesicle, nanoscale characterization with resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horizons, 2018, 3, 430-438.	8.0	49
30	Tropoelastin Implants That Accelerate Wound Repair. Advanced Healthcare Materials, 2018, 7, e1701206.	7.6	29
31	Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity. Journal of Materials Science: Materials in Medicine, 2018, 29, 5.	3.6	11
32	Tailoring the properties of a hypoxia-responsive 1,8-naphthalimide for imaging applications. Organic and Biomolecular Chemistry, 2018, 16, 619-624.	2.8	27
33	Animal models of smoke inhalation injury and related acute and chronic lung diseases. Advanced Drug Delivery Reviews, 2018, 123, 107-134.	13.7	22
34	Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine – a new paradigm for tissue repair. Biomaterials Science, 2018, 6, 60-78.	5.4	207
35	Improved bioactivity of GUMMETAL [®] , Ti ₅₉ Nb ₃₆ Ta ₂ Zr ₃ O _{0.3} , via formation of nanostructured surfaces. Journal of Tissue Engineering, 2018, 9, 204173141877417.	5.5	11
36	Sydney Nano: small matters for big impact. Biophysical Reviews, 2018, 10, 101-103.	3.2	0

#	Article	IF	CITATIONS
37	A reversible fluorescent probe for monitoring Ag(I) ions. Journal of the Royal Society Interface, 2018, 15, 20180346.	3.4	10
38	Plasma Ion Implantation of Silk Biomaterials Enabling Direct Covalent Immobilization of Bioactive Agents for Enhanced Cellular Responses. ACS Applied Materials & Interfaces, 2018, 10, 17605-17616.	8.0	36
39	Greater cellular stiffness in fibroblasts from patients with idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L59-L65.	2.9	37
40	Fabrication of Antimicrobial Poly(propylene carbonate) Film by Plasma Surface Modification. Industrial & Engineering Chemistry Research, 2017, 56, 12578-12587.	3.7	13
41	Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Scientific Reports, 2017, 7, 7315.	3.3	83
42	Gentamicin-Loaded Polysaccharide Membranes for Prevention and Treatment of Post-operative Wound Infections in the Skeletal System. Pharmaceutical Research, 2017, 34, 2075-2083.	3.5	16
43	Nanotoxicity of nanodiamond in two and three dimensional liver models. International Journal of Nanotechnology, 2017, 14, 133.	0.2	9
44	Two-in-One Biointerfaces—Antimicrobial and Bioactive Nanoporous Gallium Titanate Layers for Titanium Implants. Nanomaterials, 2017, 7, 229.	4.1	45
45	Multifaceted Biomedical Applications of Functional Graphene Nanomaterials to Coated Substrates, Patterned Arrays and Hybrid Scaffolds. Nanomaterials, 2017, 7, 369.	4.1	22
46	Biospectroscopy of Nanodiamond-Induced Alterations in Conformation of Intra- and Extracellular Proteins: A Nanoscale IR Study. Analytical Chemistry, 2016, 88, 7530-7538.	6.5	50
47	Atomized Human Amniotic Mesenchymal Stromal Cells for Direct Delivery to the Airway for Treatment of Lung Injury. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2016, 29, 514-524.	1.4	20
48	A new solution for removing metal-based catalyst residues from a biodegradable polymer. Green Chemistry, 2016, 18, 3740-3748.	9.0	34
49	Dose enhancement and cytotoxicity of gold nanoparticles in colon cancer cells when irradiated with kilo―and megaâ€voltage radiation. Bioengineering and Translational Medicine, 2016, 1, 94-102.	7.1	24
50	Injectable hybrid delivery system composed of gellan gum, nanoparticles and gentamicin for the localized treatment of bone infections. Expert Opinion on Drug Delivery, 2016, 13, 613-620.	5.0	40
51	Triple Hit with Drug Carriers: pH- and Temperature-Responsive Theranostics for Multimodal Chemo- and Photothermal Therapy and Diagnostic Applications. ACS Applied Materials & Interfaces, 2016, 8, 8967-8979.	8.0	93
52	Plasma immersion ion implantation of a two-phase blend of polysulfone and polyvinylpyrrolidone. Materials and Design, 2016, 97, 381-391.	7.0	8
53	Formulation of Biologically-Inspired Silk-Based Drug Carriers for Pulmonary Delivery Targeted for Lung Cancer. Scientific Reports, 2015, 5, 11878.	3.3	46
54	Biointerfaces: Nanoâ€Bioâ€Chemical Braille for Cells: The Regulation of Stem Cell Responses using Biâ€Functional Surfaces (Adv. Funct. Mater. 2/2015). Advanced Functional Materials, 2015, 25, 339-339.	14.9	3

#	Article	IF	CITATIONS
55	Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Advances, 2015, 5, 48739-48759.	3.6	172
56	Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials. Journal of Materials Science: Materials in Medicine, 2015, 26, 272.	3.6	8
57	The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering. Expert Opinion on Drug Delivery, 2015, 12, 869-887.	5.0	13
58	A â€~soft spot' for drug transport: modulation of cell stiffness using fatty acids and its impact on drug transport in lung model. Journal of Materials Chemistry B, 2015, 3, 2583-2589.	5.8	13
59	Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale, 2015, 7, 14191-14216.	5.6	153
60	Orientation and conformation of anti-CD34 antibody immobilised on untreated and plasma treated polycarbonate. Acta Biomaterialia, 2015, 19, 128-137.	8.3	28
61	Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. Biomaterials, 2015, 56, 46-57.	11.4	36
62	Mesoporous Silica-Layered Biopolymer Hybrid Nanofibrous Scaffold: A Novel Nanobiomatrix Platform for Therapeutics Delivery and Bone Regeneration. ACS Applied Materials & Interfaces, 2015, 7, 8088-8098.	8.0	87
63	Nanoâ€Bioâ€Chemical Braille for Cells: The Regulation of Stem Cell Responses using Biâ€Functional Surfaces. Advanced Functional Materials, 2015, 25, 193-205.	14.9	36
64	Biomedical applications of cationic clay minerals. RSC Advances, 2015, 5, 29467-29481.	3.6	179
65	Anterior Cruciate Ligament: Structure, Injuries and Regenerative Treatments. Advances in Experimental Medicine and Biology, 2015, 881, 161-186.	1.6	22
66	Luminescent mesoporous nanoreservoirs for the effective loading and intracellular delivery of therapeutic drugs. Acta Biomaterialia, 2014, 10, 1431-1442.	8.3	35
67	Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances, 2014, 4, 35332-35343.	3.6	42
68	Curcumin as a wound healing agent. Life Sciences, 2014, 116, 1-7.	4.3	447
69	Predicting physical stability in pressurized metered dose inhalers via dwell and instantaneous force colloidal probe microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 129-135.	4.3	6
70	A mini-review on novel intraperiodontal pocket drug delivery materials for the treatment of periodontal diseases. Drug Delivery and Translational Research, 2014, 4, 295-301.	5.8	17
71	Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces. Colloids and Surfaces B: Biointerfaces, 2014, 122, 537-544.	5.0	3
72	Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties. Biomaterials, 2014, 35, 5425-5435.	11.4	77

#	Article	IF	CITATIONS
73	Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation. Nuclear Instruments & Methods in Physics Research B, 2014, 329, 52-63.	1.4	20
74	Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy. Journal of Colloid and Interface Science, 2014, 426, 190-198.	9.4	9
75	Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. Materials Science and Engineering C, 2014, 35, 307-313.	7.3	20
76	Tissue engineering in dentistry. Journal of Dentistry, 2014, 42, 915-928.	4.1	167
77	Quantitative and Qualitative Examination of Particle-particle Interactions Using Colloidal Probe Nanoscopy. Journal of Visualized Experiments, 2014, , .	0.3	1
78	Root maturation and dentin–pulp response to enamel matrix derivative in pulpotomized permanent teeth. Journal of Tissue Engineering, 2014, 5, 204173141452170.	5.5	8
79	Synthesis of functionalized-thermo responsive-water soluble co-polymer for conjugation to protein for biomedical applications. Materials Research Society Symposia Proceedings, 2013, 1498, 121-125.	0.1	0
80	Influence of pH on yeast immobilization on polystyrene surfaces modified by energetic ion bombardment. Colloids and Surfaces B: Biointerfaces, 2013, 104, 145-152.	5.0	22
81	Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite. Applied Clay Science, 2013, 85, 64-73.	5.2	64
82	Biomedical Applications of Clay. Australian Journal of Chemistry, 2013, 66, 1315.	0.9	28
83	Laponite clay as a carrier for in situ delivery of tetracycline. RSC Advances, 2013, 3, 20193.	3.6	85
84	Biologically inspired â€~smart' materials. Advanced Drug Delivery Reviews, 2013, 65, 403-404.	13.7	13
85	Tethering bi-functional protein onto mineralized polymer scaffolds to regulate mesenchymal stem cell behaviors for bone regeneration. Journal of Materials Chemistry B, 2013, 1, 2731.	5.8	24
86	Silica-based mesoporous nanoparticles for controlled drug delivery. Journal of Tissue Engineering, 2013, 4, 204173141350335.	5.5	256
87	A novel in vivo platform for studying alveolar bone regeneration in rat. Journal of Tissue Engineering, 2013, 4, 204173141351770.	5.5	9
88	Biocompatible, Smooth, Plasma-Treated Nickel–Titanium Surface – An Adequate Platform for Cell Growth. Journal of Biomaterials Applications, 2012, 26, 707-731.	2.4	14
89	Magnetised Thermo Responsive Lipid Vehicles for Targeted and Controlled Lung Drug Delivery. Pharmaceutical Research, 2012, 29, 2456-2467.	3.5	47
90	Bone bonding ability—how to measure it?. RSC Advances, 2012, 2, 9214.	3.6	9

WOJCIECH CHRZANOWSKI

#	Article	IF	CITATIONS
91	Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields. Inorganica Chimica Acta, 2012, 393, 328-333.	2.4	100
92	Biointerface: protein enhanced stem cells binding to implant surface. Journal of Materials Science: Materials in Medicine, 2012, 23, 2203-2215.	3.6	20
93	<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cells. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1596-1608.	4.0	15
94	Functionalized Poly(<scp>D</scp> , <scp>L</scp> â€lactide) for Pulmonary Epithelial Cell Culture. Advanced Engineering Materials, 2010, 12, B101.	3.5	2
95	Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Filler. Advanced Engineering Materials, 2010, 12, B298.	3.5	13
96	Apatite Deposition on NaOHâ€Treated PEEK and UHMWPE Films for Sclera Materials in Artificial Cornea Implants. Advanced Engineering Materials, 2010, 12, B234.	3.5	5
97	Impaired bacterial attachment to light activated Ni–Ti alloy. Materials Science and Engineering C, 2010, 30, 225-234.	7.3	9
98	An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 2010, 31, 3885-3893.	11.4	168
99	Ion release characteristics, precipitate formation and sealing ability of a phosphate glass–polycaprolactone-based composite for use as a root canal obturation material. Dental Materials, 2009, 25, 400-410.	3.5	48
100	Control of surface free energy in titanium doped phosphate based glasses by coâ€doping with zinc. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 392-407.	3.4	19
101	A DNA Nanostructure for the Functional Assembly of Chemical Groups with Tunable Stoichiometry and Defined Nanoscale Geometry. Angewandte Chemie, 2009, 121, 9178-9178.	2.0	0
102	A DNA Nanostructure for the Functional Assembly of Chemical Groups with Tunable Stoichiometry and Defined Nanoscale Geometry. Angewandte Chemie - International Edition, 2009, 48, 525-527.	13.8	78
103	A DNA Nanostructure for the Functional Assembly of Chemical Groups with Tunable Stoichiometry and Defined Nanoscale Geometry. Angewandte Chemie - International Edition, 2009, 48, 9016-9016.	13.8	0
104	The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials, 2009, 30, 89-93.	11.4	231
105	Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomaterialia, 2009, 5, 1198-1210.	8.3	108
106	Doping of a high calcium oxide metaphosphate glass with titanium dioxide. Journal of Non-Crystalline Solids, 2009, 355, 991-1000.	3.1	50
107	Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment. Journal of the Royal Society Interface, 2009, 6, 401-409.	3.4	29
108	Structure and properties of strontium-doped phosphate-based glasses. Journal of the Royal Society Interface, 2009, 6, 435-446.	3.4	135

#	Article	IF	CITATIONS
109	Selective protein and DNA adsorption on PLL-PEG films modulated by ionic strength. Soft Matter, 2009, 5, 613-621.	2.7	29
110	Surface preparation of bioactive Ni–Ti alloy using alkali, thermal treatments and spark oxidation. Journal of Materials Science: Materials in Medicine, 2008, 19, 1553-1557.	3.6	27
111	Antimicrobial Galliumâ€Doped Phosphateâ€Based Glasses. Advanced Functional Materials, 2008, 18, 732-741.	14.9	161
112	Effect of surface treatment on the bioactivity of nickel–titanium. Acta Biomaterialia, 2008, 4, 1969-1984.	8.3	52
113	Nanomechanical evaluation of nickel–titanium surface properties after alkali and electrochemical treatments. Journal of the Royal Society Interface, 2008, 5, 1009-1022.	3.4	21
114	Chemical, Corrosion and Topographical Analysis of Stainless Steel Implants after Different Implantation Periods. Journal of Biomaterials Applications, 2008, 23, 51-71.	2.4	14
115	Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy. Journal of Materials Processing Technology, 2005, 162-163, 163-168.	6.3	30