Xi Quan Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1461567/publications.pdf

Version: 2024-02-01

28 papers 2,608 citations

257101 24 h-index 28 g-index

28 all docs 28 docs citations

28 times ranked

2586 citing authors

#	Article	IF	CITATIONS
1	Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in-Water Emulsion Separation. ACS Applied Materials & Amp; Interfaces, 2015, 7, 9534-9545.	4.0	276
2	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	16.0	253
3	Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36, 40-47.	8.3	180
4	Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation. ACS Nano, 2021, 15, 3500-3508.	7.3	175
5	Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide. Journal of Membrane Science, 2014, 452, 82-89.	4.1	164
6	Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for Safranin O and Aniline blue removal. Journal of Membrane Science, 2013, 430, 96-105.	4.1	160
7	Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly (ethylene glycol) blending. Journal of Membrane Science, 2018, 563, 22-30.	4.1	159
8	Bio-inspired loose nanofiltration membranes with optimized separation performance for antibiotics removals. Journal of Membrane Science, 2018, 554, 385-394.	4.1	127
9	Nanofiltration membrane achieving dual resistance to fouling and chlorine for "green―separation of antibiotics. Journal of Membrane Science, 2015, 493, 156-166.	4.1	122
10	High flux polyethylene glycol based nanofiltration membranes for water environmental remediation. Journal of Membrane Science, 2015, 476, 95-104.	4.1	99
11	Building Additional Passageways in Polyamide Membranes with Hydrostable Metal Organic Frameworks To Recycle and Remove Organic Solutes from Various Solvents. ACS Applied Materials & Interfaces, 2017, 9, 38877-38886.	4.0	93
12	Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification. Journal of Membrane Science, 2016, 499, 326-334.	4.1	82
13	Finely tailored pore structure of polyamide nanofiltration membranes for highly-efficient application in water treatment. Chemical Engineering Journal, 2021, 417, 127976.	6.6	81
14	In-situ interfacial formation of TiO 2 /polypyrrole selective layer for improving the separation efficiency towards molecular separation. Journal of Membrane Science, 2017, 536, 19-27.	4.1	78
15	Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by <i>in situ</i> asymmetry engineering for unprecedently ultrafast oil–water emulsion separation. Journal of Materials Chemistry A, 2020, 8, 16933-16942.	5.2	73
16	Constructing Environmental-Friendly "Oil-Diodeâ€Janus Membrane for Oil/Water Separation. ACS Nano, 2022, 16, 4684-4692.	7.3	70
17	Hyper-Cross-Linked Additives that Impede Aging and Enhance Permeability in Thin Polyacetylene Films for Organic Solvent Nanofiltration. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14401-14408.	4.0	69
18	Universal unilateral electro-spinning/spraying strategy to construct water-unidirectional Janus membranes with well-tuned hierarchical micro/nanostructures. Chemical Communications, 2020, 56, 478-481.	2.2	68

#	Article	IF	CITATIONS
19	Designing Multifunctional Coatings for Cost-Effectively Sustainable Water Remediation. ACS Sustainable Chemistry and Engineering, 2018, 6, 1881-1890.	3.2	50
20	Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation. Journal of Membrane Science, 2020, 608, 118191.	4.1	39
21	Critical operation factors and proposed testing protocol of nanofiltration membranes for developing advanced membrane materials. Advanced Composites and Hybrid Materials, 2021, 4, 1092-1101.	9.9	39
22	Development of highly permeable polyelectrolytes (PEs)/UiO-66 nanofiltration membranes for dye removal. Chemical Engineering Research and Design, 2019, 147, 222-231.	2.7	36
23	Organic Microporous Nanofillers with Unique Alcohol Affinity for Superior Ethanol Recovery toward Sustainable Biofuels. ChemSusChem, 2017, 10, 1887-1891.	3.6	27
24	Polyelectrolyte Grafted MOFs Enable Conjugated Membranes for Molecular Separations in Dual Solvent Systems. Cell Reports Physical Science, 2020, 1, 100034.	2.8	25
25	Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Advanced Composites and Hybrid Materials, 2021, 4, 562-573.	9.9	25
26	Ultrafast Poly(sodium methacrylate)-Grafted UiO-66-Incorporated Nanocomposite Membranes Enable Excellent Active Pharmaceutical Ingredient Concentration. Industrial & Engineering Chemistry Research, 2021, 60, 6287-6297.	1.8	19
27	Pore morphology control and hydrophilicity of polyacrylonitrile ultrafiltration membranes. Journal of Applied Polymer Science, 2015, 132, .	1.3	10
28	Constructing (reduced) graphene oxide enhanced polypyrrole /ceramic composite membranes for water remediation. Journal of Membrane Science, 2022, 659, 120815.	4.1	9