Charles Pin-Kuang Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1461486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. BioScience, 2015, 65, 783-797.	2.2	813
2	Dynamic Biodistribution of Extracellular Vesicles <i>in Vivo</i> Using a Multimodal Imaging Reporter. ACS Nano, 2014, 8, 483-494.	7.3	663
3	Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. Journal of Extracellular Vesicles, 2017, 6, 1286095.	5.5	561
4	Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nature Communications, 2015, 6, 7029.	5.8	449
5	Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nature Nanotechnology, 2019, 14, 1160-1169.	15.6	267
6	SCS macrophages suppress melanoma by restricting tumor-derived vesicle–B cell interactions. Science, 2016, 352, 242-246.	6.0	259
7	Role of Exosomes/Microvesicles in the Nervous System and Use in Emerging Therapies. Frontiers in Physiology, 2012, 3, 228.	1.3	254
8	Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nature Communications, 2018, 9, 175.	5.8	248
9	Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles. Stem Cells Translational Medicine, 2017, 6, 1730-1739.	1.6	247
10	Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro-Oncology, 2016, 18, 58-69.	0.6	245
11	Imaging extracellular vesicles: current and emerging methods. Journal of Biomedical Science, 2018, 25, 91.	2.6	224
12	Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Research in Cardiology, 2013, 108, 309.	2.5	216
13	Ca2+ regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium, 2009, 46, 176-187.	1.1	191
14	Tumor-Suppressive Effects of Pannexin 1 in C6 Glioma Cells. Cancer Research, 2007, 67, 1545-1554.	0.4	172
15	Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death and Differentiation, 2009, 16, 151-163.	5.0	167
16	The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 2021, 18, 1013-1026.	9.0	163
17	Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy, 2021, 23, 373-380.	0.3	125
18	Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson's Disease, Glioma, and Schwannoma. Cellular and Molecular Neurobiology, 2016, 36, 417-427.	1.7	87

#	Article	IF	CITATIONS
19	Biogenesis, delivery, and function of extracellular RNA. Journal of Extracellular Vesicles, 2015, 4, 27494.	5.5	80
20	Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics, 2018, 8, 894-905.	4.6	72
21	Glioblastoma hijacks microglial gene expression to support tumor growth. Journal of Neuroinflammation, 2020, 17, 120.	3.1	71
22	Pannexin2 as a novel growth regulator in C6 glioma cells. Oncogene, 2009, 28, 4402-4408.	2.6	65
23	Sonogenetic Modulation of Cellular Activities Using an Engineered Auditory-Sensing Protein. Nano Letters, 2020, 20, 1089-1100.	4.5	52
24	Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 26533.	5.5	51
25	Multiresolution Imaging Using Bioluminescence Resonance Energy Transfer Identifies Distinct Biodistribution Profiles of Extracellular Vesicles and Exomeres with Redirected Tropism. Advanced Science, 2020, 7, 2001467.	5.6	50
26	Pannexin1 Drives Multicellular Aggregate Compaction via a Signaling Cascade That Remodels the Actin Cytoskeleton. Journal of Biological Chemistry, 2012, 287, 8407-8416.	1.6	46
27	Noninvasive In Vivo Monitoring of Extracellular Vesicles. Methods in Molecular Biology, 2014, 1098, 249-258.	0.4	39
28	Methods for Systematic Identification of Membrane Proteins for Specific Capture of Cancer-Derived Extracellular Vesicles. Cell Reports, 2019, 27, 255-268.e6.	2.9	38
29	Proteomic Analysis of Extracellular Vesicles for Cancer Diagnostics. Proteomics, 2019, 19, e1800162.	1.3	29
30	Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform. Lab on A Chip, 2021, 21, 1475-1483.	3.1	23
31	Membrane-bound Gaussia luciferase as a tool to track shedding of membrane proteins from the surface of extracellular vesicles. Scientific Reports, 2019, 9, 17387.	1.6	17
32	Survival benefit and phenotypic improvement by hamartin gene therapy in a tuberous sclerosis mouse brain model. Neurobiology of Disease, 2015, 82, 22-31.	2.1	14
33	A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo. Nucleic Acids Research, 2020, 48, e100-e100.	6.5	10
34	Isolation and digital counting of extracellular vesicles from blood via membrane-integrated microfluidics. Sensors and Actuators B: Chemical, 2022, 358, 131473.	4.0	10
35	Multiplexed bioluminescence-mediated tracking of DNA double-strand break repairs in vitro and in vivo. Nature Protocols, 2021, 16, 3933-3953.	5.5	6
36	Tracking Extracellular Vesicles Delivery and RNA Translation Using Multiplexed Reporters. Methods in Molecular Biology, 2017, 1660, 255-265.	0.4	3

#	Article	IF	CITATIONS
37	Passing Potassium with and without Gap Junctions. Journal of Neuroscience, 2006, 26, 8023-8024.	1.7	2
38	Connexins and pannexins: Two gap junction families mediating glioma growth control. , 2009, , 547-567.		0