
Georges LinarÃ"s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1461112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A survey of quaternion neural networks. Artificial Intelligence Review, 2020, 53, 2957-2982.	15.7	93
2	Quaternion Convolutional Neural Networks for Heterogeneous Image Processing. , 2019, , .		54
3	Quaternion Convolutional Neural Networks for End-to-End Automatic Speech Recognition. , 0, , .		52
4	Feature selection using Principal Component Analysis for massive retweet detection. Pattern Recognition Letters, 2014, 49, 33-39.	4.2	49
5	Quaternion Neural Networks for Spoken Language Understanding. , 2016, , .		17
6	Modelling Semantic Context of OOV Words in Large Vocabulary Continuous Speech Recognition. IEEE/ACM Transactions on Audio Speech and Language Processing, 2017, 25, 598-610.	5.8	13
7	Deep quaternion neural networks for spoken language understanding. , 2017, , .		12
8	Remembering winter was coming. Multimedia Tools and Applications, 2019, 78, 35373-35399.	3.9	12
9	Abusive Language Detection in Online Conversations by Combining Content- and Graph-Based Features. Frontiers in Big Data, 2019, 2, 8.	2.9	12
10	Conversational Networks for Automatic Online Moderation. IEEE Transactions on Computational Social Systems, 2019, 6, 38-55.	4.4	10
11	Graph Embeddings for Abusive Language Detection. SN Computer Science, 2021, 2, 1.	3.6	10
12	Integrating imperfect transcripts into speech recognition systems for building high-quality corpora. Computer Speech and Language, 2012, 26, 67-89.	4.3	7
13	Dynamic Combination of Automatic Speech Recognition Systems by Driven Decoding. IEEE Transactions on Audio Speech and Language Processing, 2013, 21, 1251-1260.	3.2	7
14	Quaternion Denoising Encoder-Decoder for Theme Identification of Telephone Conversations. , 0, , .		6
15	Impact of Word Error Rate on theme identification task of highly imperfect human–human conversations. Computer Speech and Language, 2016, 38, 68-85.	4.3	5
16	An Author-Topic based Approach to Cluster Tweets and Mine their Location. Procedia Environmental Sciences, 2015, 27, 26-29.	1.4	4
17	Web-based possibilistic language models for automatic speech recognition. Computer Speech and Language, 2014, 28, 923-939.	4.3	3
18	Modeling nuisance variabilities with factor analysis for GMM-based audio pattern classification. Computer Speech and Language, 2011, 25, 481-498.	4.3	2