
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1460655/publications.pdf Version: 2024-02-01

FEELE TEAKALIDOLL

#	Article	IF	CITATIONS
1	Selection of potential probiotic lactic acid bacteria from fermented olives by inÂvitro tests. Food Microbiology, 2013, 33, 282-291.	4.2	752
2	Stress Physiology of Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 837-890.	6.6	487
3	Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 2006, 16, 189-199.	3.0	459
4	Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology, 2015, 6, 58.	3.5	257
5	Biochemical properties of enterococci relevant to their technological performance. International Dairy Journal, 2001, 11, 621-647.	3.0	170
6	Effect of Enterococcus faecium on microbiological, physicochemical and sensory characteristics of Greek Feta cheese. International Journal of Food Microbiology, 2002, 76, 93-105.	4.7	144
7	Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. International Journal of Food Microbiology, 2009, 130, 219-226.	4.7	143
8	Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. International Journal of Food Microbiology, 2008, 121, 18-26.	4.7	127
9	Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. International Journal of Food Microbiology, 2010, 141, S91-S97.	4.7	122
10	Macedocin, a Food-Grade Lantibiotic Produced by Streptococcus macedonicus ACA-DC 198. Applied and Environmental Microbiology, 2002, 68, 5891-5903.	3.1	98
11	The Combined Use of Whole-cell Protein Extracts for the Identification (SDS-PAGE) and Enzyme Activity Screening of Lactic Acid Bacteria Isolated from Traditional Greek Dairy Products. Systematic and Applied Microbiology, 1994, 17, 444-458.	2.8	68
12	Rapid assessment of the physiological status of Streptococcus macedonicus by flow cytometry and fluorescence probes. International Journal of Food Microbiology, 2006, 111, 197-205.	4.7	67
13	Citrate Metabolism by Enterococcus faecalis FAIR-E 229. Applied and Environmental Microbiology, 2001, 67, 5482-5487.	3.1	66
14	Technological and flavour potential of cultures isolated from traditional Greek cheeses – A pool of novel species and starters. International Dairy Journal, 2009, 19, 595-604.	3.0	60
15	Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. International Dairy Journal, 2008, 18, 476-485.	3.0	59
16	Feed supplementation of Lactobacillus plantarum PCA 236 modulates gut microbiota and milk fatty acid composition in dairy goats — a preliminary study. International Journal of Food Microbiology, 2010, 141, S109-S116.	4.7	54
17	How microbes adapt to a diversity of food niches. Current Opinion in Food Science, 2015, 2, 29-35.	8.0	52
18	Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. International Journal of Food Microbiology, 2018, 271, 48-59.	4.7	49

#	Article	IF	CITATIONS
19	Probiotic Features of Lactic Acid Bacteria Isolated from a Diverse Pool of Traditional Greek Dairy Products Regarding Specific Strain-Host Interactions. Probiotics and Antimicrobial Proteins, 2018, 10, 313-322.	3.9	48
20	Differentiation of <i>Lactobacillus sake</i> and <i>Lact. curvatus</i> isolated from naturally fermented Greek dry salami by SDSâ€₽AGE of wholeâ€cell proteins. Journal of Applied Bacteriology, 1995, 78, 157-163.	1.1	46
21	Acid Tolerance of Streptococcus macedonicus as Assessed by Flow Cytometry and Single-Cell Sorting. Applied and Environmental Microbiology, 2007, 73, 465-476.	3.1	44
22	Acquisition through Horizontal Gene Transfer of Plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 Points towards the Dairy Origin of the Species. PLoS ONE, 2015, 10, e0116337.	2.5	39
23	Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Frontiers in Microbiology, 2019, 10, 2916.	3.5	39
24	Evaluation of the antihypertensive angiotensin-converting enzyme inhibitory (ACE-I) activity and other probiotic properties of lactic acid bacteria isolated from traditional Greek dairy products. International Dairy Journal, 2017, 75, 10-21.	3.0	38
25	The effect of wild lactic acid bacteria on the production of goat's milk soft cheese. International Journal of Dairy Technology, 2010, 63, 234-242.	2.8	34
26	MALDI-TOF MS profiling of non-starter lactic acid bacteria from artisanal cheeses of the Greek island of Naxos. International Journal of Food Microbiology, 2020, 323, 108586.	4.7	33
27	Zooming Into the Microbiota of Home-Made and Industrial Kefir Produced in Greece Using Classical Microbiological and Amplicon-Based Metagenomics Analyses. Frontiers in Microbiology, 2021, 12, 621069.	3.5	32
28	Changes in protein synthesis during thermal adaptation of Propionibacterium freudenreichii subsp. shermanii. International Journal of Food Microbiology, 2006, 108, 301-14.	4.7	31
29	The complete genome sequence of the yogurt isolate Streptococcus thermophilus ACA-DC 2. Standards in Genomic Sciences, 2017, 12, 18.	1.5	31
30	Reverse micelles as nano-carriers of nisin against foodborne pathogens. Part II: The case of essential oils. Food Chemistry, 2019, 278, 415-423.	8.2	31
31	Use of Artificial Neural Networks and a Gamma-Concept-Based Approach To Model Growth of and Bacteriocin Production by Streptococcus macedonicus ACA-DC 198 under Simulated Conditions of Kasseri Cheese Production. Applied and Environmental Microbiology, 2007, 73, 768-776.	3.1	29
32	The performance of Streptococcus macedonicus ACA-DC 198 as starter culture in Kasseri cheese production. International Dairy Journal, 2007, 17, 208-217.	3.0	29
33	In vitro and in vivo safety evaluation of the bacteriocin producer Streptococcus macedonicus ACA-DC 198. International Journal of Food Microbiology, 2009, 133, 141-147.	4.7	29
34	Streptococcus macedonicus ACA-DC 198 produces the lantibiotic, macedocin, at temperature and pH conditions that prevail during cheese manufacture. International Journal of Food Microbiology, 2006, 107, 138-147.	4.7	28
35	Inhibition of Clostridium tyrobutyricum by Streptococcus macedonicus ACA-DC 198 under conditions mimicking Kasseri cheese production and ripening. International Dairy Journal, 2009, 19, 330-335.	3.0	27
36	Characterization of the gene cluster involved in the biosynthesis of macedocin, the lantibiotic produced byStreptococcus macedonicus. FEMS Microbiology Letters, 2007, 272, 75-82.	1.8	25

#	Article	IF	CITATIONS
37	Determination of triterpenic acids in natural and alkaline-treated Greek table olives throughout the fermentation process. LWT - Food Science and Technology, 2014, 58, 609-613.	5.2	25
38	Unraveling the Microbiota of Natural Black cv. Kalamata Fermented Olives through 16S and ITS Metataxonomic Analysis. Microorganisms, 2020, 8, 672.	3.6	24
39	Flour carbohydrate catabolism and metabolite production by sourdough lactic acid bacteria. World Journal of Microbiology and Biotechnology, 2007, 23, 1417-1423.	3.6	23
40	Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533. Genome Announcements, 2017, 5, .	0.8	23
41	Listeria monocytogenes Strains Underrepresented during Selective Enrichment with an ISO Method Might Dominate during Passage through Simulated Gastric Fluid and <i>In Vitro</i> Infection of Caco-2 Cells. Applied and Environmental Microbiology, 2016, 82, 6846-6858.	3.1	22
42	Survival, Intestinal Mucosa Adhesion, and Immunomodulatory Potential of Lactobacillus plantarum Strains. Current Microbiology, 2017, 74, 1061-1067.	2.2	22
43	Comparative Genomics of Lactobacillus acidipiscis ACA-DC 1533 Isolated From Traditional Greek Kopanisti Cheese Against Species Within the Lactobacillus salivarius Clade. Frontiers in Microbiology, 2018, 9, 1244.	3.5	22
44	Reverse micelles as nanocarriers of nisin against foodborne pathogens. Food Chemistry, 2018, 255, 97-103.	8.2	21
45	Growth and energy generation by Enterococcus faecium FAIR-E 198 during citrate metabolism. International Journal of Food Microbiology, 2003, 84, 197-206.	4.7	20
46	Rapid detection and identification of Streptococcus macedonicus by species-specific PCR and DNA hybridisation. International Journal of Food Microbiology, 2003, 81, 231-239.	4.7	18
47	Microemulsions as Potential Carriers of Nisin: Effect of Composition on Structure and Efficacy. Langmuir, 2016, 32, 8988-8998.	3.5	18
48	Evaluation of Two Lactic Acid Bacteria Starter Cultures for the Fermentation of Natural Black Table Olives (Olea europaea L cv Kalamon). Polish Journal of Microbiology, 2015, 64, 265-271.	1.7	18
49	Omics Approaches to Assess Flavor Development in Cheese. Foods, 2022, 11, 188.	4.3	15
50	Cometabolism of Citrate and Glucose by Enterococcus faecium FAIR-E 198 in the Absence of Cellular Growth. Applied and Environmental Microbiology, 2006, 72, 319-326.	3.1	14
51	Probiotic and safety assessment of Lactobacillus strains isolated from Lebanese Baladi goat milk. International Dairy Journal, 2021, 120, 105092.	3.0	14
52	Lactobacillus kefiranofaciens: From Isolation and Taxonomy to Probiotic Properties and Applications. Microorganisms, 2021, 9, 2158.	3.6	14
53	Lipolytic activity of cheese related microorganisms and its impact on cheese flavour. Developments in Food Science, 1995, 37, 1823-1847.	0.0	13
54	Milk Protein Fragments Induce the Biosynthesis of Macedocin, the Lantibiotic Produced by <i>Streptococcus macedonicus</i> ACA-DC 198. Applied and Environmental Microbiology, 2010, 76, 1143-1151.	3.1	12

#	Article	IF	CITATIONS
55	Characterization of pLAC1, a cryptic plasmid isolated from Lactobacillus acidipiscis and comparative analysis with its related plasmids. International Journal of Food Microbiology, 2010, 141, 222-228.	4.7	10
56	New insights into the citrate metabolism of Enterococcus faecium FAIR-E 198 and its possible impact on the production of fermented dairy products. International Dairy Journal, 2011, 21, 580-585.	3.0	10
57	Coat Milk with Different Alpha-s1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus paracasei as Potential Functional Food. Fermentation, 2019, 5, 55.	3.0	10
58	Purification and characterization of the X-prolyl-dipeptidyl aminopeptidase (PepX) from Streptococcus macedonicus and cloning of the pepX gene. Dairy Science and Technology, 2002, 82, 657-671.	0.9	10
59	Whole-Genome Sequences of Three Streptococcus macedonicus Strains Isolated from Italian Cheeses in the Veneto Region. Genome Announcements, 2017, 5, .	0.8	8
60	Differential Modulation of Listeria monocytogenes Fitness, <i>In Vitro</i> Virulence, and Transcription of Virulence-Associated Genes in Response to the Presence of Different Microorganisms. Applied and Environmental Microbiology, 2020, 86, .	3.1	6
61	Isotopic Traceability (13C and 18O) of Greek Olive Oil. Molecules, 2020, 25, 5816.	3.8	5
62	Comparative and evolutionary analysis of plasmid pREN isolated from Lactobacillus rennini, a novel member of the theta-replicating pUCL287 family. FEMS Microbiology Letters, 2011, 318, 18-26.	1.8	4
63	Whole-genome sequence data and analysis of Lactobacillus delbrueckii subsp. lactis ACA-DC 178 isolated from Greek Kasseri cheese. Data in Brief, 2019, 25, 104282.	1.0	4
64	Stress Responses of Streptococci. , 2011, , 251-303.		4
65	Detection of Streptococcus macedonicus in Greek cheeses. International Dairy Journal, 2009, 19, 96-99.	3.0	3
66	Whole-Genome Sequence of the Cheese Isolate Streptococcus macedonicus 679. Genome Announcements, 2016, 4, .	0.8	3
67	Whole-Genome Sequence of the Cheese Isolate Lactobacillus rennini ACA-DC 565. Genome Announcements, 2017, 5, .	0.8	3
68	Complete Genome Sequence of the Sourdough Isolate Lactobacillus zymae ACA-DC 3411. Genome Announcements, 2017, 5, .	0.8	2
69	Complete Genome Sequence of the Yogurt Isolate Lactobacillus delbrueckii subsp. <i>bulgaricus</i> ACA-DC 87. Genome Announcements, 2017, 5, .	0.8	2
70	Engineered strains of Streptococcus macedonicus towards an osmotic stress resistant phenotype retain their ability to produce the bacteriocin macedocin under hyperosmotic conditions. Journal of Biotechnology, 2015, 212, 125-133.	3.8	1
71	Microbial Flora. , 2010, , 781-798.		Ο