
Suxiao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1460288/publications.pdf Version: 2024-02-01

SUVIAO WANC

#	Article	IF	CITATIONS
1	Aspartic Acid-Assisted Size-Controllable Synthesis of Nanoscale Spherical Covalent Organic Frameworks with Chiral Interfaces for Inhibiting Amyloid-β Fibrillation. ACS Applied Bio Materials, 2022, 5, 1210-1221.	4.6	6
2	Phosphorylation of covalent organic framework nanospheres for inhibition of amyloid-Î ² peptide fibrillation. Chemical Science, 2022, 13, 5902-5912.	7.4	7
3	Stealthy nanoparticles protect endothelial barrier from leakiness by resisting the absorption of VE-cadherin. Nanoscale, 2021, 13, 12577-12586.	5.6	11
4	The combined impact of protein corona-free property of starch coated poly (methyl methacrylate) nanoparticles: Amylose content and surface charge. International Journal of Biological Macromolecules, 2021, 172, 341-349.	7.5	7
5	Quantitative Analysis of Protein Corona on Precoated Protein Nanoparticles and Determined Nanoparticles with Ultralow Protein Corona and Efficient Targeting in Vivo. ACS Applied Materials & Interfaces, 2021, 13, 56812-56824.	8.0	9
6	Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties. Nanoscale, 2020, 12, 5834-5847.	5.6	22
7	Highly elastic and flexible transparent conductive films derived from latex copolymerization: P(SSNa-BA-St)/PEDOT/graphene. RSC Advances, 2019, 9, 42335-42342.	3.6	3
8	Photophysical Probing of Dye Microenvironment, Diffusion Dynamics, and Energy Transfer. Journal of Physical Chemistry C, 2018, 122, 6900-6911.	3.1	13
9	Templated microwave synthesis of luminescent carbon nanofibers. RSC Advances, 2018, 8, 12907-12917.	3.6	18
10	Polymer Nanoparticles Microenvironment: Using Photophysical Probes to Investigate Internal Porosity and Polarity. Journal of Physical Chemistry C, 2018, 122, 28977-28989.	3.1	1
11	Triazolylidene Metal Complexes Tagged with a Bodipy Chromophore: Synthesis and Monitoring of Ligand Exchange Reactions. Organometallics, 2017, 36, 1469-1478.	2.3	20
12	Surfactant-free, low band gap conjugated polymer nanoparticles and polymer:fullerene nanohybrids with potential for organic photovoltaics. Nanotechnology, 2016, 27, 245601.	2.6	13
13	Encapsulation of MEH-PPV:PCBM Hybrids in the Cores of Block Copolymer Micellar Assemblies: Photoinduced Electron Transfer in a Nanoscale Donor–Acceptor System. Langmuir, 2016, 32, 329-337.	3.5	16
14	Labeling the Structural Integrity of Nanoparticles for Advanced In Situ Tracking in Bionanotechnology. ACS Nano, 2016, 10, 4660-4671.	14.6	25